
Chan’s randomized optimization technique

• T. M. Chan, “Geometric Applications of a Randomized Optimization

Technique,” Discrete and Computational Geometry, vol. 22, pp. 547–

567, 1999.

• For certains geometric problems, the technique can turn a deterministic

algorithm for the decision version into a randomized algorithm for the

optimization version.

Decision Problem:

• Given an instance I and a value k, answer if there exists a solution for I

whose value is k, at most k, or at least k.

• E.G.: Given a set I of points in the plane and a value k, does there exist

a spanning tree connecting all points in I whose length is at most k?

Optimization Problem:

• Given an instance I , answer a solution for I with the minimum or maxi-

mum value.

• E.G.: Given a set I of points in the plane, find a spanning tree connecting

all points in I with the minimum length.

Importance of the Techniques

• It is usually easier to develop an algorithm for the decision version of a

problem than the optimization version.

• An algorithm for the decision version is probably a bit simpler, i.e., easier

for implementation

• Expected behavior of an algorithm usually reflects its actual behavior, i.e.,

the worst case hardly occurs.

Finding the minimum of r numbers, i.e., min{A[1], A[2], . . . , A[r]}

Algorithm RAND-MIN

1. randomly pick a permutation 〈i1, . . . , ir〉of〈1, . . . , r〉

2. t←∞

3. for k = 1, . . . , r do

4. if A[ik] < t then (decision)

5. t← A[ik] (evaluation)

6. return t

O(Dr + E log r) expected time

• Imagine A[0], . . . , A[r] have not yet been precomputed

• D: time to decide if A[i] < t

• E: time to evaluate A[i]

• The expected number of times that step 5 is execuated is ln r + 1. (Exer-

cise)

• O(Dr + E log r). If E >> D, it is better than O(Er).

Consider an instance I with n elements for a minimization problem. Let

A[I] be the cost of the minimal solution for I . Assume we can randomly

partitaion I into r subsets with almost equal size, I1, . . . , Ir such that A[I] =

min{A[I1], . . . , A[lr]}.

• if A[li] < t: a decision problem

• t← A[li]: an optimization problem

• O(D(n/r)r + E(n/r) ∗ log r)

– D(m): time to solve the decision problem for an m-size input

– E(m): time to solve the optimization problem for an m-size input

Denotation and Assumption

• Γ represent the problem space

• Given a problem P ∈ Γ, let w(P) ∈ R be its solution

• |P | is the size of P (a positive integer)

• The solution of a problem of constant size can be computed
in constant time.

Lemma Chan’s randomized technique
Let α < 1, ε > 0, r be constants, and let D()̇ be a function such
that D(n)/nε is monotone increasing in n. Given any problem
P ∈ Γ, suppose that within D(|P |) time,

(i) we can decide whether w(P) < t for any given t ∈ R, and

(ii) we can construct r subproblems, P1, . . . , Pr, each of size at
most dα|P |e, so that

w(P) = min{w(P1), . . . , w(Pr)}.

Then for any problem P ∈ Γ, we can compute the solution w(P)
in O(D(|P |) expected time

Proof

General Idea

• Compute w(P) by applying Algorithm Rand-Min to the unknown num-

bers w(P1), w(P2), . . . , w(Pr).

• Deciding w(Pi) < t takes D(|Pi|) time.

• Evaluating w(Pi) is done recursively unless |Pi| drops below a certain

constant.

Analysis

• let T (P) be the random variable corresponding to the time needed to

compute w(P).

• Let N(Pi) be 0-1 random variable, having value 1 if and only if w(Pi) is

evaluated

T (P) = (

r∑
i=1

N(Pi)T (Pi)) + O(rD(|P |)).

Note that the expected number of evaluations by Algoirthm RAND-MIN is

E[
∑r

i=1N(Pi)] ≤ ln r + 1

• Define T (n) = max|P |≤nE[T (P)].

Since N(Pi) and T (Pi) are independent, we have

E[T (P)] =

r∑
i=1

E[N(Pi)]E[T (Pi)] + O(rD(|P |))

≤ (ln r + 1)T (dα|P |e) + O(rD(|P |))

By Master theorem,

T (n) = (ln r + 1)T (dαne) + O(D(n)).

If we assume,

(ln r+)αε < 1,

T (n) ≤ CḊ(n) for an appropriate constant C depending on α, r, and ε.

(Exercise)

To enforce (ln r+)αε < 1, we compress l levels of the recursion into one before

appying Algorithm Rand-Min, where l is a sufficiently large constant. Then,

• r increases to rl

• α decreases to αl

• liml→∞(ln rl + 1)αlε = 0

Note:

The above lemma still holds if (i) and (ii) require D(|P |) expected time

(rather than the worst-case).

Applications

Closest Pairs

• Let U be a collection of objects.

• Given a distance function d : U × U → R,

– closest-pair problem: to compute w(P) = minp,q∈Pd(p, q) for a given

set P ⊂ U

– closest-pair decision problem: to determine whether w(P) < t for a

given P and t ∈ R.

Theorem.

If the closest-pair decision problem can be solve inD(n) time, then the closest-

pair problem can be solved in O(D(n)) expected time, assuming that D(n)/n

is monotone increasing.

• Arbitrarily partition P into three subsets P1, P2, P3 of roughly equal size.

w(P) = min{w(P1 ∪ P2), w(P2 ∪ P3), w(P1 ∪ P3)}

• Applying the technique with r = 3 and α = 2
3.

Ray Shooting

• Let U be a collection of objects

• Let V be a collection of rays

• Let τ : U × V → R be an ordering function, where τ (p1, q) < τ (p2, q)

means that ray q hit object p1 before p2.

• The ray shooting problem: to preprocess a given set P ⊂ U of size n

into a data structure that answers queries of the following type:

– given q ∈ V , compute W (P, q) = minp∈Pτ (p, q).

• The ray shooting decision problem: given any q ∈ V and t ∈ R, deter-

mine whether w(P, q) < t.

Theorem

If the ray-shooting decision problem can be solved with P (n) preprocessing

and D(n) query time, then the ray-shooting problem can be solved with

O(P (n)) preprocessing and O(D(n)) expected query time, assuming that

P (n)/n1+ε and D(n)/nε are monotone increasing forsome constant ε > 0

proof

• Parition P into two subset P1 and P2 of roughly equal size, build the

decision data structures for P1 and P2, and recursively preprocess P1 and

P2.

• The new preprocessing time P ′(n) satisfies the recurrence

P ′(n) = 2P ′(n/2) + O(P (n).

• If P (n)/n1+ε is monotone increasing, P ′(n) = O(P (n))

• To compute a given q ∈ V , we can divide the problem into two subprob-

lems, each of size roughly n/2:

w(P, q) = minw(P1, q), w(P2, q)

.

• Chan’s technique implies the expected query time to be O(D(n)).

