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@ Voronoi Diagrams and Delaunay Triangulations
e Properties and Duality

© 3D geometric transformation




Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision




Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision




Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision
@ Each region contains exactly one site p € S and is denoted
by VR(p, S).




Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision
@ Each region contains exactly one site p € S and is denoted
by VR(p, S).




Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision
@ Each region contains exactly one site p € S and is denoted
by VR(p, S).




Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision
@ Each region contains exactly one site p € S and is denoted
by VR(p, S).
@ For each point x € VR(p, S), p is its closest site in S.




Voronoi Diagram

@ Given a set S of n point sites, Voronoi Diagram V(S) is a
planar subdivision

@ Each region contains exactly one site p € S and is denoted
by VR(p, S).
@ For each point x € VR(p, S), p is its closest site in S.
@ VR(p, S) is the locus of points closer to p than any other
site.




@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.




@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.

® D(p,q)= {x € R?| d(x,p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).




@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.
o D(p,q)={x € R? | d(x.p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).

D(p.q) Dlay)




@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.
o D(p,q)={x € R? | d(x.p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).

D(p,q) D(q,p)




Voronoi Region
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Voronoi Region

@ Bisector B(p, q)= {x € R? | d(x,p) = d(x,q)}.

® D(p,q)={x € R?| d(x,p) < d(x,q)}.
e Two half-planes D(p, q) and D(q, p) separated by B(p, q).

VR(p,S)= () D(p.q).
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Voronoi Edge and Vertex

@ Voronoi Edge

e Common intersection between two adjacent Voronoi
regions VR(p, S) and VR(q, S)
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Voronoi Edge and Vertex

@ Voronoi Edge

e Common intersection between two adjacent Voronoi
regions VR(p, S) and VR(q, S)
e A piece of B(p, q)

@ Voronoi Vertex

e Common intersection among more than two Voronoi
regions VR(p, S), VR(q. S), VR(r, S), and so on.
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Wavefront Model (Growth Model)

@ Grow circles from Vp € S at unit speed
e x € R? is first hit by a circle from p — x belongs to VR(p, S)
e x € R? s first hit by two circles from p and g — x belongs
to a Voronoi edge between VR(p, S) and VR(q, S)
e x € R?is first hit by three circles from p, g, and r — x is a
Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)
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Unbounded Region

@ VR(p, S) is unbounded if and only if p is a vertex of the
convex hull of S.
@ Select a point ¢ in the convex hull
e Shoot a ray C_/S fromctop
e For any point x € ch \ €p, x belongs to VR(p, S)
° c—ﬁ) extends to the infinity.

@ If Sis in convex position, V(S) is a tree.
@ An unbounded Voronoi edge corresponds to a hull edge.




Voronoi Diagram (Mathematic Definition)

@ Voronoi Diagram V/(S)

V(S) = R?\ (|J VR(p, S)) = | 9VR(p. S)
peS peS

e JOVR(p, S) is the boundary of VR(p, S)
® 9VR(p,S) £ VR(p, S)
e V/(S) is the union of all the Voronoi edges

@ Voronoi Edge e between VR(p, S) and VR(q, S)
e = 0VR(p, S)NdVR(q, S)
@ Voronoi Vertex v among VR(p, S), VR(q, S), and VR(r, S)

v = OVR(p, S) N OVR(q, S) N AVR(r, S)



Complexity of V(S)

V(S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

@ Add alarge curve I'
e [ only passes through unbounded edges of V(S)
e Cut unbounded pieces outside I
e One additional face and several edges and vertices.




Complexity of V(S)

V(S) has O(n) edges and vertices. The average number of
edges of a Voronoi region is less than 6.

@ Euler's Polyhedron Formula: v —-e+f=1+c¢

o v: # of vertices, e: # of edges, f: # of faces, and c: #
number of connected components.

@ An edge has two endpoints, and a vertex is incident to at
least three edges.

e 3v<2e—v<2e/3

@ef=n+1andc=1
ev=14+c+e—-f=e+1-n<2¢/3—-e<3n-3
ee=v+f—-1-c=v+n—-1>38v/2—->v<2n-2

@ Average number of edges of a region < (6n—6)/n < 6



Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal
collection of non-crossing line segments among S.
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collection of non-crossing line segments among S.
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Definition

An edge pq is called Delaunay if there exists a circle passing
through p and g and containing no other point in its interior.
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Delaunay Triangulation

Definition
A Delaunay Triangulation is a triangulation whose edges are
all Delaunay.

@ For each face, there exists a circle passing all its vertices
and containing no other point.
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General Position Assumption

@ No more than two point sites are colinear
e V(S)is connected
@ No more than three point sites are cocircular
(At most three points are on the same circle)

e degree of each Voronoi vertex is exactly 3.
e Each face of the Delaunay triangulation is a triangle.

@ There is a unique Delaunay triangulation.




Duality
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Under the general position assumption, the Delaunay
triangulation is a dual graph of the Voronoi diagram.

@ A site p <» a Voronoi region VR(p, S)

@ A Delaunay edge pq <> a Voronoi edge between VR(p, S)
and VR(q, S)

@ A Delaunay triangle Apqr < a Voronoi vertex among
VR(p, S), VR(q, S) and VR(r, S)




Geometric Transformation from 2D to 3D

@ A paraboloid P = {(x1, X2, X3) | X? + X3 = X3} in 3D
@ For a point x = (x1, x2) in 2D, x" = (xy, X2, X2 + x3) is its
lifted image in 3D
e x’ « vertical projection from x to P
@ For a set A of points in 2D, its lifted image
A= {X"=(x1,X0, X2 + X3) | x = (X1, %) € A}




Circle in 2D < Planar Curve in P

Let C be a circle in the plane. Then C’ is a planar curve on the
paraboloid P

@ Cisgivenby r’ = (xy — ¢1)? + (X2 — ¢2)?
o r2=x2+x2—2x101 —2X2C2 + C2 + C3
o C’ satisfies x2 + x5 = x3
@ Substituting xZ + x3 by x3, we obtain a plane E

X3 — 2X1Cq —2X2C2+C12+C§—f2:0

e C'=PnNnE
@ Intersection between E and P is a planar curve



Lower Convex Hull

@ S on P — S’ in convex position
@ Each point of S’ is a vertex of conv(S')

@ Lower convex hull Iconv(S’) of S’ is the part of conv(S’)
visible from x3 = —o0




Duality between DT(S) and Iconv(S') (1)

The Delaunay triangulation DT(S) equals to the vertical
projection onto the xi x»-plane of the lower convex hull of S’

@ p,q,r e S. C: circumcircle of p,q, r
@ (' lies on a plane E defined by p',q', r’
@ a point x inside C « lifted image x’ below E




Duality between DT(S) and Iconv(S') (2)

The Delaunay triangulation DT(S) equals to the vertical
projection onto the xi1 xo-plane of the lower convex hull of S’

@ p, q, r defines a triangle of DT(S)
<+ no point of Siin C defined by p,q, r
<+ no point of S’ below E defined by p', q', r’
< p',q',r' defines a facet of lconv(S')
@ Computing a convex hull in 3D takes O(nlog n) time
e V(S)in O(nlogn) time




Another Viewpoint of paraboloid

For each s = (s1, s2) € S, a paraboloid

Ps = {(x1,X,X3) | X3 = (x1 — 81)% + (%2 — $2)?}

e For each x = (01, 02) in xy X2 plane, vertical distance from x
to Ps is d(x, s)?

@ Opaque and of pairwise different colors

@ Looking from x3 = —oo upward — V(S)

@ Vertical from x upward first hits Ps — x € VR(p, S)
@ PsnN P — B(s,t)

@ Lower envelope of (J; 5 Ps — V(S)
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Wavefront model revisited

@ Ps = {(x1,x2,X3)|x3 = F((xy — 51)° + (X2 — 82)?)}
e fis a strictly increasing function
o Lower envelope of [ J;.5 Ps — V(S)

o f(X) = \/)?: \/(X1 — S1)2 + (X2 — 82)2
e Cones of slope 45° with apices at sites s € S

@ Expanding circles Cs from sites s € S at equal unit speed

o time t =radiusr
o r2 = (X1 — 81)2 + (X2 — 82)2

o x3=+/(X1 — 51)2+ (x2 — S2)2 = radius = time
@ x first hit by Cs <+ upward vertical projection from x first hit
Ps




Thank You!!




