Discrete and Computational Geometry, WS1415 Exercise Sheet "1": Randomized Algorithms for Geometric Structures I
 University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Tuesday 21th of May, 14:00 pm. There will be a letterbox in the LBH building.
- You may work in groups of at most two participants.
- Please contact Hilko Delonge, hilko.delonge@uni-bonn.de, if you want to participate and have not yet signed up for one of the exercise groups.
- If you are not yet subscribed to the mailing list, please do so at https://lists.iai.uni-bonn.de/mailman/listinfo.cgi/lc-dcgeom

Exercise 1: Probability Space

(4 Points)
Consider a standard 52-card deck of poker cards. Assume we do not distinguish cards by their suits, i.e., cards with the same number are identical. We want to select 5 cards from the deck. Please define the probability space as follows.

1. Please describe the sample space Ω. (The outcome can be classified into 6 category, and each category has different number of elements.)
2. Please describe the family \mathcal{F} of events, e.g., the total number.
3. Please describe the probability function Pr by illustrating the probability for the elements in the sample space. (just one element for each category)
4. Let X be the random variable representing the sum of 5 cards. Please compute the expectation of X.

Exercise 2: Average Complexity of Sorting

Given a set N of n real numbers, please analyze the average complexity for the following sorting algorithms over all the n ! permutation sequences of N.

- Insertion Sort
- Merge Sort
- Quick Sort (always select the first element)

Exercise 3: Vertical Trapezoidal Decomposition (4 Points)

Given a set N of n line segments with a total number k of intersection in the plane, let $S_{1}, S_{2}, \ldots, S_{n}$ be a random sequence of N, and let N^{i} be $\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$. Please prove the following.

1. The vertical trapezoidal decomposition $H(N)$ of N has $O(n+k)$ trapezoids (faces) even if more than two line segments can intersects at the same point.
2. The expected number of trapezoids in $H\left(N^{i}\right)$ is $O\left(i+k i^{2} / n^{2}\right)$. (Hint: the expected number of intersections)
