Problem Set 5

Problem 1

Give a (possibly randomized) algorithm that solves the fractional knapsack problem in expected linear time in the worst case.

Problem 2

Let $X \subseteq \mathbb{R}^{d}$ denote a set of N vectors. You may assume that $x_{i} \neq y_{i}$ for every $i \in[d]$ and all vectors $x, y \in X$ with $x \neq y$. Then a vector $x \in X$ is Pareto-optimal if and only if there does exist a vector $y \in X$ with $y_{i}<x_{i}$ for all $i \in[n]$. Give an algorithm that computes the set $P \subseteq X$ of Pareto-optimal vectors in time $O(N \log N)$ for $d=2$ and $d=3$.

Hint: For $d=3$, first sort the vectors in increasing order according to their first coordinate. Then insert the vectors one after another and compute the sets S_{1}, \ldots, S_{N}, where $S_{i} \subseteq X$ denotes the subset of the first i vectors from X that are Pareto-optimal with respect to the second and third coordinate. How do these sets help you to compute the set of Pareto-optimal vectors?

Problem 3

Give an implementation of the Expanding Core algorithm in Java or C ++ . Use your implementation to solve instances in which all profits and weights are chosen uniformly at random from $[0,1]$ for $n=100,200,300, \ldots$. How does the number of items in the core and the running time depend on n in your experiments.

