6. Bottom-Up Sampling

Bottom-Up Sampling is a gradational method of building search struc-
tures based on random sampling.

General geometric search problem:

Given a set N of objects in R?, construct the induced complex (partition)
H(N) and a geometric search structure H(N) that can be used to answer
the queries over H (V) quickly.

e a point location query in a planar subdivision

Assumption
The complex H(N) satisfies the bounded degree property.

e Every face of H(INV), at least of the dimension that matters, is defined by
a bounded number of objects in N

e This assumption is needed to make the randome sampling technique
e [f partition does not satisfy the assumption, a suitable refinement is needed

— Vertical trapezoidal decomposition for the arrangement.

For a set N of n objects, a gradation of N
is a sequence of sets, N1, No, ..., N, such that

eN=N,DN,C---ON,_ DN, =

e N;.1 is obtained from N; by flipping a fair coin independently for each
object in NN; and retaining only those objects for which the toss was a

head.

Complexity with High Probability

f(n) = O(g(n)),

if for some positive constant ¢, f(n) < cg(n), with probability 1 — 1/p(n),
where p(n) is a polynomial whose degree depends on c.

e The degree of p(n) can be very high by choosing the constant ¢ large
enough.

e With probability 1/p(n), f(n) > cg(n)

Lemma
The expected value of r = O(log n)

o N=1{51,5,...,8,}

o For 1 < j <n,let X, be the random variable that X; = ¢ if S; belongs
to V; not to N, 1.

e X is a geometric distribution that Pr(X; =) = (1/2)’
e X1, Xy, ..., and X, are independent and identical.

e Let T), be a random variable representing max;<;<y, X;.

e E[r] = E[T})]
e Then
E[T) =) Pr(T, >i)=) 1-Pr(T, <i)
Zp(p%)ﬂ()(/f@(p%)ﬂd@ — O(losn)
Lemma)
r = O(logn)

e For each object in N, the probability that this object belongs to Ni,q is
(1/2)"
e The probability that r > k is bouneded by
n

?.
— The probability of union of events is bounded by the sum of probabil-
ities of those event

e By choose k£ = clog, n, the probablity that » > clog, n is bounded by

nC
e With probability at least 1 — 1/n°1,

r < clogn.

Lemma .
E[Z [Ni|] =
i=1

e [t is equivalent to the expected sum of the maximum level of all objects

— If the maximum level of an object is ¢, it contributes ¢ to the quantity
e The probability that the maximum level of an object is at least 4 is 1/2'}
e The expected maximum level of an object is

> 5 = ol

1>1

e Due to linearity of expectation, we have

ZIN| 2. o

1<j<n

General Idea for Bottom-Up Sampling
The search structure sample(N) is constructed as follow

1. Generate a gradation, (N, No, ..., N,,), of N
2. Build H(V;) for 1 <i <r

3. For 2 <4 < r, associate each face of H(N;) with the conflict list of objects
in N;_1 \ N; that conflicting it.

4. Between two successive levels ¢ and ¢ + 1, compute a descent structure
descent (i + 1,4) which will be used in answering queries.

Queries for Bottom-Up Sampling
Given a query point ¢, answer which configuration of H(N) contains ¢

e From ¢ = r to ¢ = 1, locate the configuration of H(IV;) contains q
e From 7 = r, it is trivial

e When descending from N; to IV;_1, use descent(i, i-1) to find out the
configuration of H(N;_1) contains ¢

Skip List

For a set IV of n points on the real line, the skip list sample(/N) is a search
structure based on Bottom-Up Random Sample to answer which interval in
H(N) contains a fiven query point ¢ efficiently.

e The skip list is the simpliest search structure based on Bottom-Up Random
Sampling

e There is always a dummy node associated with —oo

e For an interval I of H(NV;), the intervals in H(N;_1) which are contained
in [are called the children of I.

Construction of Skip List
e For 1 <i <r, compute H(N;) by sorting points in NN;

e For 2 < ¢ < r, each point NV, is linked to its counterpart in /V;_; by a descent
pointer.

e The construction time is

r

D O(INi|log |N;|) = O(logn) 3 | O(|Ni|) = O(nlogn).

1=1

e The bound O(nlogn) can be obtained similarly.

‘ * * * H(N)

<—descent pointer

“‘ ¢ ‘ ¢ ;?HUV?)

iiiooioooioioiif[(%)

A point location query for ¢
1. Let the single interval of H(N,) be A,. A, clearly contains p
2. From 71 =1 to1 =2,

(a) Let A; be the interval in H(N;) that contains ¢

(b) Use the descent pointer assocaited with the left endpoint of A to search
through all children of A;. Actually, we search from left to right and
not all children are visited.

Ay
O H(N4)

—H(N>)

oo—o—oioioiiH(Nl)

S
— 00 S

Query time is O(logn) and O(logn)
e let [(A\;) be the number of children of A,

— Let Ip(4\;) and [1(A;) be the number of points in N;_1 \ V; that are
contained in A; left and right to g, respectively.

— (D) = (L) + (D)
e When N, 4 is fixed, ly(4\;) is distributed according to the geometric dis-
tribution with probability 1/2

— because [y(A\;) = k if and only if for exactly the k nearest points in
N;_1 to the left of ¢, the tosses are all failures.

o Elly(A;)] = O(1), so does E[l1(A;)] = O(1)

N[Z S (A;)] is O(logn) and O(logn) because r is O(logn) and
O(logn).

m

Point Location Search Structure in Arrangements
Given a set N of n lines in the plane, the point location search structure
Sample(N) for the arragnement G(IN) of N is constructed as follows:

e Generate a gradation of N, Ny, No, ..., N,

e For 1 < i < r, compute the arrangment G(N;) and the trapezoidal
decomposition H(N;)

e For each trapezoid A of H(N;), store a conflict list L(A) of the line in
N; 1\ NV; interseting A\

e Compute the descent structure descent(i+1, ¢) as the partition H (NV;11)®
H(N;) by superimpossing H(N;.1) and H(N;) on each other

e Associate with each trapezoid in descent(i + 1,4) a pointer to the unique
trapezoid H (N;) that contains it.

~ _—

é/

N

| = .q

/ ~_ A"

H(N)

descent(l + 1,1) = H(Ny41) & H(N;)

Locate a point ¢ in H(N) using the search structure

1. It is trivial to locate ¢ in H(N,) because it contains only one trapezoid,
i.e., the entire plane.

2. From i = r — 1 to ¢ = 1, assume that we have located ¢ in H(N;.1), and
use descent(i + 1,4) to locate ¢ in H(N;) as follows

(a) Let A be the trapezoid in H(N;41) that contains gq.

(b) Let A denote the restriction of the superimposed partition descent(i +
1,4) within A.

(c) Project a vertical ray from ¢ to hit a line Q € N and let ¢’ be the
hitting point. It is clear than () either from the boundary of A or
belongs to L(A).

(d) Let v be the intersection of ¢ with a line in L(A) or the boundary of
A\, which is nearest to ¢’ on its left side.

(e) It is easy to see that computing ¢’ and v’ take O(|L(A)| + 1) time
(f) By walking from v to ¢/, we can use A to find out the trapezod in
H(N;) that contains g.

Intuitive Analysis for Query Time
e Since E[|N;1|] = SE[|N;[], at high probability, for each interval A €
H(N;y1), L(A) is O(logn).

e Since there are O(logn) levels, the total search time is O(log n?).

Advanced Analysis for Query Time (A Sktech)

e For all i, |[L(A;)| = NB(4), where NB(s) denotes the random variable
that is equal to the number of tails obtained before obtaining s heads.

— (Rough thought) A trapezoid is defined by at most 4 lines, and each
line corresponds to one direction (up, down, right, left).

— In up direction, it is equivalent to sequentialy draw a coin for lines
above ¢ accordering to vertical distance to ¢, i.e., equal to NB(1).

— NB(1) = O(1) and NB(4) = 4NB(1) = O(1)
e O(logn) x O(1) = O(log n)

Construction Time

e For 1 < i <r, H(N,) can be constructed in O(n?) time, where n; is the
number of lines in V.

e Constructing conflict lists takes O(n; * n;_1) time
— For a fixed line) € N;_1, the number of trapezoids in H(N;) that are
intersected by @ is O(n;). (Zone theorem)
— Let S be any fixed line in NN,
— Locate @ NS in H(N;) by searching along S.
— Search along @) from Q NS in both directly will find all trapezoids in
H(N;) that are conflicted by @
— It takes O(n;) time for @, and thus O(n; * n;_1) time for total
e Building descent(i,7 — 1) takes O(n; x n;_1) time
— It is equivalent to computing H (N;) & H(N;_1).
— H(N;) ® H(N;_1) can be refined trivially from H(V;) & G(N;_1)
— H(N;) @& G(N;_1) can be obtained by “drawing” lines in IV;_;1 \ V; on
the top of H(N;)
— We add to H(N;) the lines in N; \ V;_1, one at a time, in any oder.

— By the conflict information, adding a line takes O(n;) time
e The total time is > . _; O(n; x n;).
e Since S_7_, O(n;) = O(n), we have

r

Z O(nixn;) = O(()_ 0(n:))*) = O(n?).

[=1

Summary

Given a set N of n lines, a search structure for the arrangment formed by N
can be constructed in O(n2) time and space such that the point location query
can be conducted in O(logn) time.

