Selected Topics in Algorithmics, SS15 Exercise Sheet "3": Voronoi Diagrams and Delaunay Triangulations

University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Wednesday 3rd of June, 14:30 pm. There is a letterbox in front of room E.01 in the LBH building.
- You may work in groups of at most two participants.

Exercise 7: Local Test (Voronoi Diagrams) (4Points)

Consider a set S of n points. Let R be a subset of S, and let e be the Voronoi edge between $\operatorname{VR}(p, R)$ and $\operatorname{VR}(q, R)$. Please prove for a site $t \in S \setminus R$, $e \cap \operatorname{VR}(t, R \cup \{t\}) = e \cap \operatorname{VR}(t, \{p, q, t\})$. (Hint: prove $e \cap \operatorname{VR}(t, R \cup \{t\}) \subseteq$ $e \cap \operatorname{VR}(t, \{p, q, t\})$ and $e \cap \operatorname{VR}(t, \{p, q, t\}) \subseteq e \cap \operatorname{VR}(t, R \cup \{t\})$. The former is obvious, so you can consider any point in $e \cap \operatorname{VR}(t, \{p, q, t\})$ to prove the latter. A point belongs to $\operatorname{VR}(t, R \cup \{t\})$ if its closest site in $R \cup \{t\}$ is t. Any point in e is closer to p and q than other points in R.)

Exercise 8: Voronoi Diagrams by History Graph (6Points)

Consider a set S of n points satisfying the general position assumption that no three points are in the same line, and no four points are in the same circle. Let s_1, s_2, \ldots, s_n be a random sequence of S, and let R^i be $\{s_1, s_2, \ldots, s_i\}$. Please develop a randomized algorithm to construct the Voronoi diagram V(S) of Sby computing $V(R^5), V(R^6), \ldots, V(R^n)$ iteratively using the history graph. In other words, for $i \ge 4$, obtain $V(R^{i+1})$ from $V(R^i)$ by adding s_{i+1} . (Hint: Transform the randomized incremental construction using conflict lists in the slide into one using history graph.)

1. Define a node in the history graph.

- 2. Describe the parent and child relation in the history graph. (3 points) (Hint: If a point conflicts with a child, the point should conflict with one parent of the child.)
- 3. Describe the insertion of s_{i+1} using the history graph.
- 4. Prove the expected cost of inserting s^{i+1} to be $O(\log i)$ and the expected cost of construction V(S) to be $O(n \log n)$

Exercise 9: Delaunay Triangulation by Conflict Lists (6Points)

Consider a set S of n points satisfying the general position assumption that no three points are in the same line, and no four points are in the same circle. Let s_1, s_2, \ldots, s_n be a random sequence of S, and let R^i be $\{s_1, s_2, \ldots, s_i\}$. Please develop a randomized algorithm to construct the Delaunay triangulation DT(S) of S by computing $DT(R^5)$, $DT(R^6), \ldots, DT(R^n)$ iteratively using the conflict lists. In other words, for $i \ge 4$, obtain $DT(R^{i+1})$ from $DT(R^i)$ by adding s_{i+1} . (Hint: Use the duality between the Voronoi diagram and the Delaunay triangulation.)

- 1. Define a configuration which you will use.
- 2. Define a conflict relation between a configuration and a point.
- 3. Describe the insertion of s_{i+1} using the conflict lists. (3 points)
- 4. Prove the expected construction time to be $O(n \log n)$