## 3. General Theoretical Foundation

Conflict Graph $G(V, E)$

- $V$ : configurations in $H\left(N^{i}\right)$ and objects in $N \backslash N^{i}$
- E: conflict relations between configurations in $H\left(N^{i}\right)$ and objects in $N \backslash$ $N^{i}$

1. Use the conflict graph to find out all configurations in $H\left(N^{i}\right)$ which conflict with $S^{i+1}$
2. Create new configrautions defined (or called supported) by $S^{i+1}$
3. Update conflict graph

- Remove invalid configurations and the corresponding edges
- Add edges between the new configuations in $H\left(N^{i+1}\right)$ and their conflicted objectes in $N \backslash N^{i+1}$

Hisotry graph $G(V, E)$ (directed graph)

- $V$ : configurations in $H\left(N^{0}\right), H\left(N^{1}\right), \ldots, H\left(N^{i}\right)$
- $E$ : direct arcs from $H\left(N^{j-1}\right) \backslash H\left(N^{j}\right)$ and $H\left(N^{j}\right) \backslash H\left(N^{j-1}\right)$, for $1 \leq$ $j \leq i$, i.e., configurations killed by $S^{j}$ and configuartions created by $S^{j}$
- $G$ is an acyclic graph, and only configuartions in $H\left(N^{0}\right)$ don't have in-going edges and are called roots.
- If an object $S$ conflicts with a configuration $f$, there is one path from a root to $f$ along which all configuartions are in conflict with $S$.
- (optional) Each configuration has a constant number of out-going edges.

1. Use the history to find out all configurations in $H\left(N^{i}\right)$ in conflict with $S^{i+1}$
2. Create new configrautions defined (or called supported) by $S^{i+1}$
3. Add edges between $H\left(N^{i}\right) \backslash H\left(N^{i+1}\right)$ and $H\left(N^{i+1}\right) \backslash H\left(N^{i}\right)$

Kenneth L. Clarkson, Kurt Mehlhorn, and Raimund Seidel
Four, Results on Randomized Incremental Construction Cpmputational Geometry: Theory and Applications 3, pp. 185-212, 1993.

Denotation Changes

| $N$ | $S$ |
| :---: | :---: |
| $S_{1}, S_{2}, \ldots, S_{n}$ | $\pi_{S}=x_{1}, x_{2}, \ldots, x_{n}$ |
| $H(N)$ | $\mathcal{F}_{0}(S)$ |
| history $(i)$ | $H(i)$ |

3.1 Basic Denotations
$\boldsymbol{S}$ : a set of $n$ objects (points, line segments, circles)
$\mathcal{F}(S)$ : configurations defined by $S$

- A configuration is defined by at most $b$ objects.
- a triangle is defined by 3 points, a trapezoid is defined by at most 4 line segments.
- A multiset: $c \leq b$ elements can define more than one configuration - 3 segments can defined 7 trapezoids
- For a configuration $F \in \mathcal{F}(S)$ and an object $x \in S$, if $x \in F, F$ replies on $x$ and $x$ supports $F$

$C \subseteq S \times \mathcal{F}(S)$ : conflict relations between $S$ and $\mathcal{F}(S)$
- $(x, F) \in C \rightarrow x$ does not support $F$
- $(x, F) \in C$ usually means a nonempty intersection between $x$ and $F$ - a point $x$ insides a triangle $F$

Example: Vertical Trapezoidal decomposition

- $S$ : a set of $n$ line segment
- $\mathcal{F}(S)$ : trapezoids defined by $S$ (two trapezoids can intersect)
- $(x, F) \in C$ : line segment $x$ intersects $F$
- Different from that an endpoint of $x$ is located inside a trapezoid $F$
$\mathcal{F}_{\mathbf{0}}(\boldsymbol{R})=\{F \in \mathcal{F}(R) \mid \forall x \in R,(x, F) \notin C\}$, for a $r$-element random sample $R$ of $S$
- any configuration in $\mathcal{F}_{0}(R)$ does not conflict with any object in $R$.
$\pi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a random permutation of $S$
- $R_{j}=\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}$
- $\pi_{j}=\left(x_{1}, x_{2}, \ldots, x_{j}\right)$

History $H_{r}(\pi)=H\left(x_{1}, x_{2}, \ldots, x_{r}\right)=\bigcup_{1 \leq i \leq r} \mathcal{F}_{0}\left(R_{i}\right)$

- $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ is the first $r$ elements of $\pi_{S}$
- equivalent to trapzoids in history $(r)$
- $H_{r}=H_{r}(\pi)$


## Fact

If $\pi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a random permutation of $S, R_{j}$ is a random subset of size $j$ of $S,\left(x_{1}, x_{2}, \ldots, x_{j}\right)$ is a random permutation of $R_{j}$, $x_{j}$ is a random element of $R_{j}$, and if $\delta$ is a (fixed) permutation, $\pi \delta$ is random permutation

For a subset $R \subseteq S, r=|R|$, and two distinct objects, $x, y, \in R$,

- $\operatorname{deg}(x, R)=\mid\left\{F \in \mathcal{F}_{0}(R) \mid x\right.$ supports $\left.F\right\} \mid$
- the number of triangles in a triangulation incident to a point $x$
$\bullet \operatorname{pdeg}(x, y, R)=\mid\left\{F \in \mathcal{F}_{0}(R) \mid x\right.$ and $y$ support $\left.F\right\} \mid$
- the number of triangles in a triangulation iwith an edge $\overline{x y}$
- $c(R)=\frac{1}{r} \sum_{x \in R} \operatorname{deg}(x, R)$
- $p(R)=\frac{1}{r(r-1)} \sum_{(x, y) \in R \times R} \operatorname{pdeg}(x, y, R)$

Important Expected Values

- $c_{r}=E[c(R)]=\sum_{R \subseteq S,|R|=r} c(R) /\binom{n}{r}$
- $p_{r}=E[p(R)]=\sum_{R \subseteq S,|R|=r} p(R) /\binom{n}{r}$
- $f_{r}=\sum_{R \subseteq S,|R|=r}\left|\mathcal{F}_{0}(R)\right| /\binom{n}{r}$
- $c_{1}=p_{1}=f_{1}$ and for $j<1$ or $j>n, c_{j}=p_{j}=f_{j}=0$.


### 3.2 Lemmas and Theorems

All expected values are computed with respect to a random permutation $\pi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $S$

## Lemma 1

1. $c_{r} \leq b f_{r} / r$
2. $p_{r} \leq b(b-1) f_{r} / r(r-1)$, for $r>1$
proof: For evey configuration $F \in \mathcal{F}_{0}(S)$
3. At most $b$ objects support $F$
4. At most $b(b-1)$ order pairs of objects support $F$

## Theorem 1

Let $C_{r}$ be the expected size of $H_{r} . C_{r}=\sum_{1 \leq i \leq r} c_{i}$. proof:

1. $H_{0}$ is empty and $C_{0}=0$
2. For $i \geq 1,\left|H_{i} \backslash H_{i-1}\right|=\operatorname{deg}\left(x_{i}, R_{i}\right)$.
3. $R_{i}$ is a random subset of $S$ of size $i$ and $x_{i}$ is a random element of $R_{i}$, $E\left[\operatorname{deg}\left(x_{i}, R_{i}\right)\right]=E\left[c\left(R_{i}\right)\right]=c_{i}$.
4. $E\left[\left|H_{r}\right|\right]=E\left[\sum_{1 \leq i \leq r}\left|H_{i} \backslash H_{i-1}\right|\right]=\sum_{1 \leq i \leq r} \mid E\left[\left|H_{i} \backslash H_{i-1}\right|\right]=\sum_{1 \leq i \leq r} c_{i}$

Example Let $R$ be a random subset of $S$ of size $r$

- Since the triangualtion of $R$ has $O(r)$ triangles, $c_{r}=O(1)$ and $E\left[\left|H_{r}\right|\right]=O(r)$.
- Since the expected number of trapezoids in the trapezoidal decomposition of $R$ is $O\left(r+k r^{2} / n^{2}\right)$, where $k$ is the number of intersections among the $n$ line segments, $c_{r}=O\left(1+k r / n^{2}\right)$ and $E\left[\left|H_{r}\right|\right]=O\left(r+k r^{2} / n^{2}\right)$


## Theorem 2

The expected number of configurations in $H_{r-1}$ which are in conflict with $x_{r}$ is $-c_{r}+\sum_{j \leq r} p_{j}$.
proof:

- Let $X$ be the number of configurations $F \in H_{r-1}$ with $\left(x_{r}, F\right) \in C$
- Let $H=H_{r-1}=H\left(x_{1}, x_{2}, \ldots, x_{r-1}\right)$

Let $H^{\prime}=H\left(x_{r}, x_{1}, \ldots, x_{r-1}\right)$, i.e., $x_{r}$ is pretend to be inserted first.

- $\left|H \cup H^{\prime}\right|=|H|+\left|H^{\prime} \backslash H\right|=\left|H^{\prime}\right|+\left|H \backslash H^{\prime}\right|$
- $X=\left|H \backslash H^{\prime}\right|$
- $H^{\prime} \backslash H$ comprises configurations supported by $x_{r}$.

How many of them appear when $x_{j}$ is inserted, $1 \leq j \leq r-1$.
Let $R_{j}^{\prime}=R_{j} \cup\left\{x_{j}\right\}$. For each $F \in H^{\prime} \backslash H$,

- either $F \in \mathcal{F}_{0}\left(\left\{x_{r}\right\}\right)$ or
$-F \in \mathcal{F}_{0}\left(R_{j}^{\prime}\right)$ and $x_{j}$ support $F, \exists j \geq 1$. Since $F$ must be supported by $x_{r}$, the total number is $\operatorname{pdeg}\left(x_{r}, x_{j}, R_{j}^{\prime}\right)$
- $X=|H|-\left|H^{\prime}\right|+\left|H^{\prime} \backslash H\right|$
$=|H|-\left|H^{\prime}\right|+\left|\mathcal{F}_{0}\left(\left\{x_{r}\right\}\right)\right|+\sum_{1 \leq j \leq r-1} \operatorname{pdeg}\left(x_{r}, x_{j}, R_{j}^{\prime}\right)$
$E[X]=E[|H|]-E\left[\left|H^{\prime}\right|\right]+E\left[\left|\mathcal{F}_{0}\left(\left\{x_{r}\right\}\right)\right|\right]+\sum_{1 \leq j \leq r-1} E\left[\operatorname{pdeg}\left(x_{r}, x_{j}, R_{j}^{\prime}\right)\right]$
- $E[|H|]=C_{r-1}, E\left[\left|H^{\prime}\right|\right]=C_{r}$, and $C_{r-1}-C_{r}=-c_{r}$
- $E\left[\left|\mathcal{F}_{0}\left(\left\{x_{r}\right\}\right)\right|\right]=f_{1}=p_{1}$ and $E\left[\operatorname{pdeg}\left(x_{r}, x_{j}, R_{j}^{\prime}\right)\right]=p_{j+1}$ since $R_{j}^{\prime}$ is a random subset of $S$ of size $j+1$ and $x_{r}$ and $x_{j}$ are random elements of this subset
- $E[X]=-c_{r}+\sum_{j \leq r} p_{j}$

Example: Vertical Trapezoidal Decomposition

- $c_{i} \leq b f_{i} / i=4 * O\left(i+k i^{2} / n^{2}\right) / i=O\left(1+k i / n^{2}\right)$
- $p_{i} \leq b(b-1) f_{i} / i(i-1)=12 O\left(i+k i^{2} / n^{2}\right) / i(i-1)=O\left(1 / i+k / n^{2}\right)$
- $-O\left(1+k i / n^{2}\right)+\sum_{1 \leq i \leq r} O\left(1 / i+k / n^{2}\right)=O\left(\log r+k r^{2} / n^{2}\right)$


## Lemma 2

1. The expected number of configurations in $\mathcal{F}_{0}\left(R_{j-1}\right)$ in conflict with $x_{r}$ is $f_{j-1}-f_{j}+c_{j}$
2. The expected number of configurations in $\mathcal{F}_{0}\left(R_{j-1}\right)$ supported by $x_{j-1}$ and in conflict with $x_{r}$ is at most $b\left(f_{j-1}-f_{j}+c_{j}\right) /(j-1)$ proof
3. Difference between $\mathcal{F}_{0}(R)$ and $\mathcal{F}_{0}(R \cup\{x\})$

- configurations in $\mathcal{F}_{0}(R)$ in conflict with $x$
- configuration in $\mathcal{F}_{0}(R \cup\{x\})$ supported by $x$
$\mathcal{F}_{0}\left(R_{j-1} \cup\left\{x_{r}\right\}\right)=\mathcal{F}_{0}\left(R_{j-1}\right) \backslash\left\{F \in \mathcal{F}_{0}\left(R_{j-1}\right) \mid\left(x_{r}, F\right) \in C\right\} \cup\{F \in$ $\mathcal{F}_{0}\left(R_{j-1} \cup\left\{x_{r}\right\}\right) \mid x_{r}$ supports $\left.F\right\}$
$\rightarrow E\left[\left|\mathcal{F}_{0}\left(R_{j-1}\right)\right|\right]-E\left[\left|\mathcal{F}_{0}\left(R_{j-1} \cup\left\{x_{r}\right\}\right)\right|\right]+E\left[\mid\left\{F \in \mathcal{F}_{0}\left(R_{j-1} \cup\left\{x_{r}\right\}\right) \mid\right.\right.$
$x_{r}$ supports $\left.\left.F\right\} \mid\right]=f_{j-1}-f_{j}+c_{j}$

2. Since $x_{j-1}$ is a random element of $R_{j-1}$, the probability with which a configuration in (1) is supported by $x_{j-1}$ is at most $b /(j-1)$, implying an expected value $b\left(f_{j-1}-f_{j}+c_{j}\right) /(j-1)$

## Conflict History

- $G=G_{n}=G_{\pi}=C \cap\left(S \times H_{n}\right)$ for a random sequence $\pi$ of $S$, i.e., the conflict relations between $S$ and $H_{n}$.
- Bipartite Graph $G(U, V, E)$
$-U=S$
$-V=H_{n}$
$-E=\{(u, v) \mid u \in U, v \in V,(u, v) \in C\}$
- $|G|=|E|$


## Theorem 3

$E[|G|]=-C_{n}+\sum_{1 \leq j \leq n}(n-j+1) p_{j}$.
proof
$E[|G|]=\sum_{1 \leq i \leq n}\left(-c_{i}+\sum_{1 \leq j \leq i} p_{j}\right)$
$=-C_{n}+\sum_{1 \leq i \leq n} \sum_{1 \leq j \leq i} p_{j}$
$=-C_{n}+\sum_{1 \leq j \leq n}(n-j+1) p_{j}$ since $p_{j}$ occurs $(n-j+1)$ times

Example Vertical Trapezoidal Decomposition

- $C_{n}=\sum_{1 \leq i \leq n} O\left(i+k i / n^{2}\right)=O(n+k)$
- $|G| \leq \sum_{1 \leq i \leq n}(n-i+1) O\left(1 / i+k / n^{2}\right)$
$\leq \sum_{1 \leq i \leq n} O(n / i+k / n)=O(n \log n+k)$
- note that a conflict relation between a segment $x$ and a trapezoid $F$ indictes that $x$ intersect $F$ (not defined for an endpoint of $x$ )


### 3.3 Deletion

For $\pi=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Pi_{S}$ and $i \in[1 \cdots n]$,
$\pi \backslash i=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$.
Delete $x_{i}$ from $\pi$ as $x_{i}$ has never been inserted.

- Compute $H(\pi \backslash i)$ from $H(\pi)$
- Analyze $G(\pi \backslash i)$ from $G(\pi)$


## Theorem 4

$\frac{1}{n!n} \sum_{\pi \in \Pi_{S}} \sum_{1 \leq i \leq n}|H(\pi) \oplus H(\pi \backslash i)| \leq 2 b \frac{C_{n}}{n}-c_{n}$. proof

- $|B \oplus A|=|A|-|B|+2|B \backslash A|$
$|H \oplus H(\pi \backslash i)|=|H(\pi \backslash i)|-|H|+2|H \backslash H(\pi \backslash i)|$
- $H \backslash H(\pi \backslash i)$ comprises configurations in $H$ supported by $x_{i}$
$-E[|H|]=C_{n}$, and any $F \in H$ is supported by no more than $b$ objects
$-E[|H \backslash H(\pi \backslash i)|] \leq b C_{n} / n$
- $E[|H(\pi) \oplus H(\pi \backslash i)|]=C_{n-1}-C_{n}+2 E[|H \backslash H(\pi \backslash i)|] \leq-c_{n}+2 b C_{n} / n$

Example: Vertical Trapezoidal Decomposition

- $C_{n}=O(k+n), b=4$, and $c_{i}=O\left(1+k i^{2} / n^{2}\right)$
- $E[|H \oplus H(\pi \backslash i)|]=O(1+k / n)$


## Theroem 5

$E[|G(\pi \backslash i) \backslash G(\pi)|]=\frac{1}{n!n} \sum_{\pi \in \Pi_{S}} \sum_{1 \leq i \leq n}|G(\pi \backslash i) \backslash G(\pi)|$
$\leq c_{n}-(b+1) C_{n} / n+\sum_{1 \leq j \leq n} b p_{j}-\sum_{1 \leq j \leq n}(b+1)(j-1) p_{j} / n$.
proof

- $G=G(\pi),|G(\pi \backslash i) \backslash G|=|G(\pi \backslash i)|-|G|+|G \backslash G(\pi \backslash i)|$
$\rightarrow E[|G(\pi \backslash i) \backslash G|]=E[|G(\pi \backslash i)|]-E[|G|]+E[|G \backslash G(\pi \backslash i)|]$
$\rightarrow E[|G(\pi \backslash i) \backslash G|]=E[|G \backslash G(\pi \backslash i)|]+c_{n}-\sum_{1 \leq j \leq n} p_{j}$
- A pair $(x, F)$ is in $G \backslash G(\pi \backslash i)$ if it is in $G$ and either $x_{i}=x$ or $x_{i} \in F . \rightarrow$ at most $b+1$ choices of $x_{i}$
$\rightarrow$ the probablity with $(x, F) \in G \backslash G(\pi \backslash i)$ is $b+1 / n$
- $E[|G \backslash G(\pi \backslash i)|] \leq(b+1) E[|G|] / n$

Example: Vertical Trapezoidal Decomposition

- $E[|G \backslash G(\pi \backslash i)|]=O(\log n+k / n)$


## Theroem 6

For a fixed $i$, let $I$ be the set of conflicts of the form $\left(x_{j}, F\right)$ with $j>i$ and $F \in \mathcal{F}_{0}\left(R_{i-1}\right) \backslash \mathcal{F}_{0}\left(R_{i}\right)$. Then for random $\pi \in \Pi_{S}$ and random $i \in[1 \cdots n]$, $E[|I|]=\left(E[|G|]-E[|H|]+f_{n}\right) / n$
proof

- Let $I_{i}$ denote the set $I$ for $x_{i} \rightarrow E[|I|]=\sum_{1 \leq i \leq n} E\left[\left|I_{i}\right|\right] / n$
- Since $I_{i}$ are disjoint, $E[I]=E\left[\left|\bigcup_{i} I_{i}\right|\right] / n$
- For any conflict $\left(x_{j}, F\right) \in G$,
- either $F \in \mathcal{F}_{0}\left(R_{j-1}\right)$
- or there is exactly one $i<j$ such that $F \in \mathcal{F}_{0}\left(R_{i-1}\right) \backslash \mathcal{F}_{0}\left(R_{i}\right)$

$$
\rightarrow\left(x_{j}, F\right) \in I_{i}
$$

- $E[|G|]=E\left[\left|\bigcup_{1 \leq i \leq n} I_{i}\right|\right]+E\left[\left|\left\{\left(x_{j}, F\right) \in G \mid F \in \mathcal{F}_{0}\left(R_{j-1}\right)\right\}\right|\right]$
- For each conflict $\left(x_{j}, F\right)$ with $F \in \mathcal{F}_{0}\left(R_{j-1}\right), F$ appears in $H \backslash \mathcal{F}_{0}(S)$ exactly once $\rightarrow E\left[\left|\left\{\left(x_{j}, F\right) \in G \mid F \in \mathcal{F}_{0}\left(R_{j-1}\right)\right\}\right|\right]=E[|H|]-\left|\mathcal{F}_{0}(S)\right|$ Example: Vertical Trapezoidal Decomposition
- $E[|I|]=O(\log n+k / n)$

