Chih-Hung Liu

Taiwan

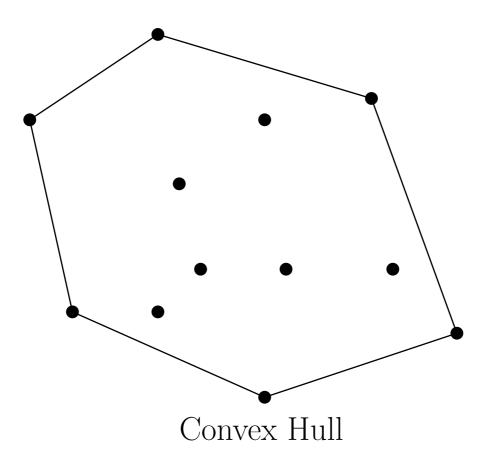
B. S., Computer Science, National Taiwan University

Ph. D, Electronics Engineering, National Taiwan University

chliu@uni-bonn.de

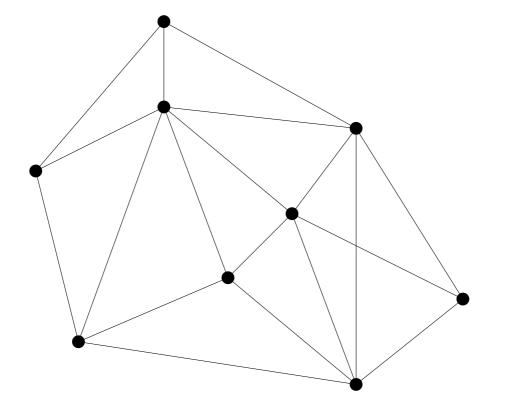
Selected Topics in Algorithmics

Randomized Algorithms for Geometric Structures

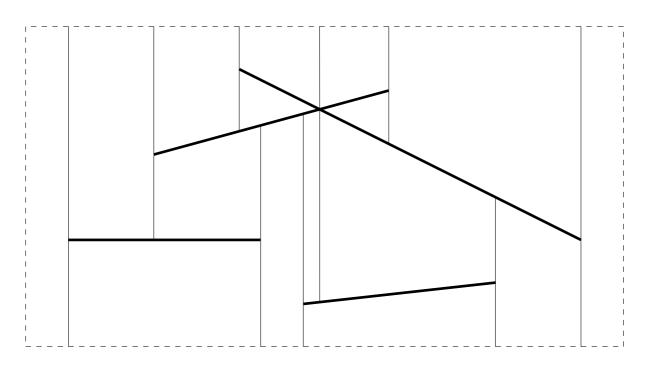


A set $C \subseteq \mathbb{R}^2$ is **convex** if for any two points $p, q \in C, \overline{pq} \subseteq C$.

For a set S of points, the convex hull of S is the minimum convex set containing S

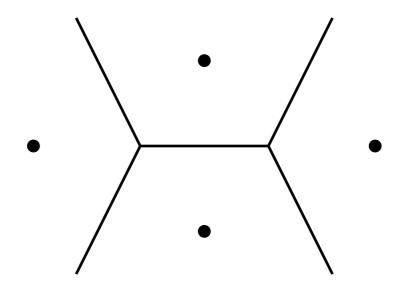


For a set S of points, a **triangulation** of S is a maximal collection of edges among S without any edge crossing



For a set S of line segments, the vertical trapezoidal decomposition of S is constructed as follows:

- Pass a vertical attachment through every endpoint or point of intersection
- Each vertical attachement extends upwards and downwards until it hit another segment or if no such segment exist, it extends to infinity



For a set S of point sites, the Voronoi diagram of S is a planar subdivision such that all points in a region share the same nearest site among S

A **randomized algorithms** we are interested in this lecture is an algorithm which will make **random choices** during the computation. For example, Quick sort can be viewed as a randomized algorithm if the pivot is selected randomly.

Advantages

- Simpler Structure
 - Easy for implementation
 - Constant inside the Big-O is small
- Worst-case hardly happen
 - more efficient in practice
 - Quick-sort is the most efficient sorting algorithm in practice.

Main topics

- Randomized Incrmental Construction
- Randomized Divided and Conquer
- Their Applications

Referance Book: Ketan Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms, Prentice Hall, 1993

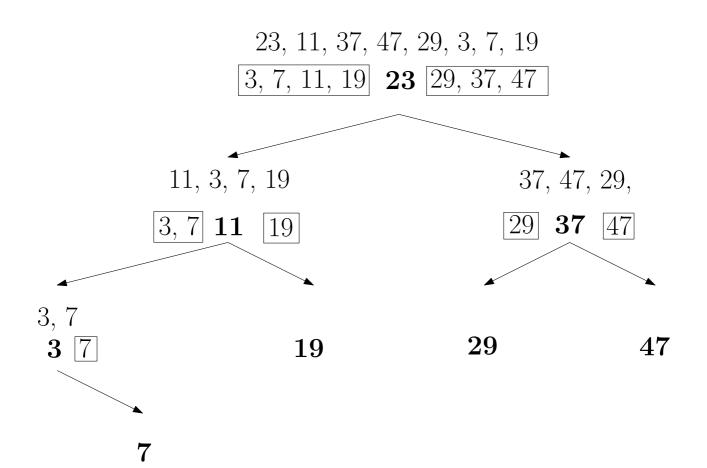
- Lecture notes depict the main ideas
- For more details, please refer to the books and related papers.

1. Quick Sort And Search

Input: a set N of n real numbers (distinct) Output: an ordered sequence of N

\mathbf{Qucik} - $\mathbf{Sort}(N)$

- 1. If |N| = 1, return N.
- 2. Select a number p from N
- 3. Let N_L be $\{l \mid l \in N \text{ and } l < p\}$ Let N_R be $\{r \mid r \in N \text{ and } r > p\}$
- 4. If $|N_L| > 0$, $L = \text{Quick-Sort}(N_L)$; else $L = \emptyset$
- 5. If $|N_R| > 0$, $L = \text{Quick-Sort}(N_R)$; else $R = \emptyset$
- 6. return a sequence L, p, R

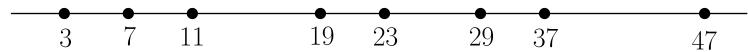


Expected Time Complexity

- If a subset has k elements, it takes O(k) comparisons.
- If a level has m subsets, N_1, N_2, \ldots, N_m , since they are distinct, a level needs $\sum_{i=1}^m O(|N_i|) = O(n)$.
- Expected size of N_L (or N_R) = $\frac{n}{2}$, expected depth of recursion = O(logn)
- $O(n \log n)$ expected time

Sorting - Geometric Structure

An Ordered Sequence = A Partition of Real Line R



• Sorting Problem:

Find the partition H(N) of R formed by the given set N of n points.

• Search Problem:

Associate a search structure $\widetilde{H}(N)$ with H(N) so that, given any point $q \in R$, one can locate the interval in H(N) containing qquickly, e.g., in logarithmic time.

1.1 Randomized Incremental Version of Quick Sort

 S_1, S_2, \dots, S_n : a **random sequence** of N $N^0 = \emptyset$ $N^i = \{S_1, S_2, \dots, S_i\}$ $H(N^0)$ is R $H(N^i)$ is the partition of R by N^i

Randomized Incremental Construction: $H(N^0), H(N^1), H(N^2), \ldots, H(N^n) = H(N).$

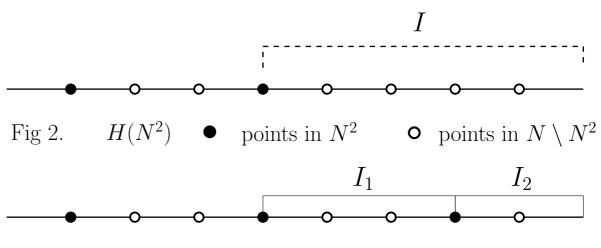


Fig 3. Addition of the third point S^3

Conflict List:

For each interval I in $H(N^i)$, conflict list L(I) is an unsorted list of points in $N \setminus N^i$ contained by I, and l(I) is the size of L(I)

E.g., in Fig. 2, L(I) has four points.

Fact

Each point in $N \setminus N^i$ is related to a unique interval in $H(N^i)$.

There is a unique edge between a point in $N \setminus N^i$ and its conflicted interval in $H(N^i)$.

Adding a point $S = S^{i+1}$ into N^i

- 1. Find a interval I in $H(N^i)$ which contains S.
- 2. Separate I by S into I_L and I_R .
- 3. Compute $L(I_L)$ and $L(I_R)$ by L(I)

Adding S takes $O(l(I_L) + l(I_R) + 1)$

- 1. Finding I takes O(1) due to the unique edge between S and I in the conflict list.
- 2. Separtating I takes O(1) time
- 3. Computing $L(I_L)$ and $L(I_R)$ takes $O(l(L)) = O(l(I_L) + l(I_R) + 1)$ time.

Backward Time Analysis

Inserting S^{i+1} into $H(N^i)$ = Deleting S^{i+1} from $H(N^{i+1})$

Each point S in N^{i+1} is equally likely to be S^{i+1} .

 $I_L(S)$: Interval left to S

 $I_R(S)$: Interval right to S

Expected Time of Adding S:

$$\frac{1}{i+1} \sum_{S \in N^{i+1}} O(l(I_L(S)) + l(I_R(S)) + 1)$$

$$\leq \frac{2}{i+1} \sum_{J \in H(N^{i+1})} O(l(J) + 1)$$
Each interval are adjacent to at most two parts

Each interval are adjacent to at most two points

$$= O(\frac{n}{i+1})$$

Expected Time Complexity of Randomized Incremental Version:

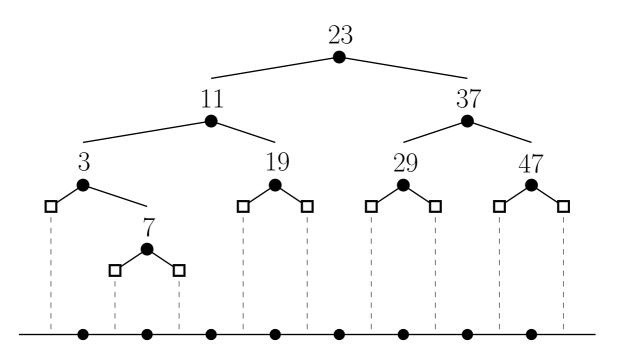
$$\sum_{i=1}^{n} O(\frac{n}{i+1}) = O(n \log n)$$

1.2 Randomized Binary Tree

$$N = \{ 23, 11, 37, 47, 29, 3, 7, 19 \}$$

$$S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8$$

Divide-and-Conquer Quick-Sort



Random Binary Tree $\widetilde{H}(N)$ is defined as follows:

- If $N = \emptyset$, $\widetilde{H}(N)$ is a node corresponding to the whole real line R
- otherwise,
 - the root of $\widetilde{H}(N)$ is a randomly chosen point $S \in N$
 - $-\widetilde{H}(N_L)$ and $\widetilde{H}(N_R)$ are defined recursively for the havles of R on the two sides of S, where N_L and N_R are the sets of points in $N \setminus S$ left to and right to S, respectively.

Search Problem:

Given a point $q \in R$, we locate the invertval in H(N) containing q by applying a binary search on $\widetilde{H}(N)$.

Expected search time = expected depth of $\widetilde{H}(N) = O(\log n)$

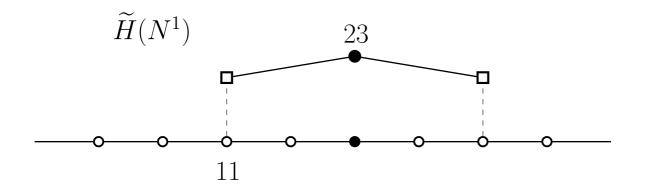
1.3 History (On-Line)

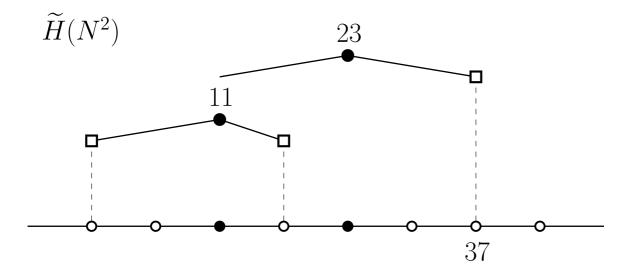
Randomized Incremental Version of Quick-Sort through the Random Binary Tree

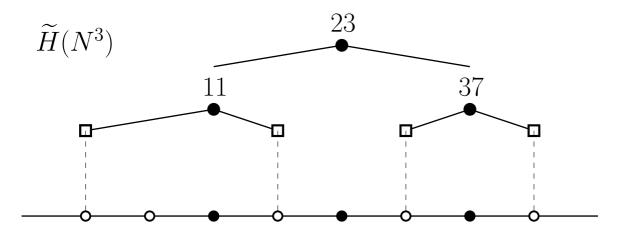
• Locating the interval using the binary tree

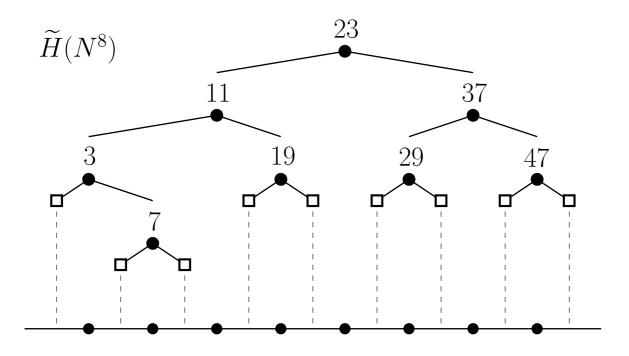
 S_1, S_2, \ldots, S_n is a random sequence of N

(23, 11, 37, 47, 29, 3, 7, 19)









Property: If S_j is the left child of S_i , S_j must belong to the left Interval of S_i in $H(N^i)$.

Cost of Inserting S_j = Searching which interval S_j is located in

= Length of Search Path

Backward Analysis

For a query pint q, the search cost is analyzed as follows:

- If the search tests S_i , q must belong to the left or right interval of S_i in $H(N^i)$ \rightarrow probability of testing S_i is 2/i
- Expected length of search path is $\sum_{i=1}^{n} 2/i = O(\log n)$
- Similarly, inserting S_i takes $O(\log i)$ time

Total Time of Constructing $\tilde{H}(N)$:

$$\sum_{i=1}^n O(\log i) = O(n \log n)$$

This randomized incremental construction through a random binary tree does not require conflict lists:

An on-line algorithm

history(i)

- $\bullet \ \widetilde{H}(N^i)$
- Auxiliary Information
 - Each internal node of $\widetilde{H}(N^i)$ records the left and right intervals when it was created.
 - Each interval records the creation and the deletion time (if it is dead).

history(i)

- Contains the entire history of construction, $\widetilde{H}(N^0), \widetilde{H}(N^1), \ldots, \widetilde{H}(N^n)$.
- Allow searching in $\widetilde{H}(N^i)$ by the auxiliary information.