
Chih-Hung Liu

Taiwan
B. S., Computer Science, National Taiwan University

Ph. D, Electronics Engineering, National Taiwan University

chliu@uni-bonn.de

Selected Topics in Algorithmics

Randomized Algorithms for Geometric Structures

Convex Hull

A set C ⊆ R2 is convex if for any two points p, q ∈ C, pq ⊆ C.

For a set S of points, the convex hull of S is the minimum convex set

containing S

For a set S of points, a triangulation of S is a maximal collection of

edges among S without any edge crossing

For a set S of line segments, the vertical trapezoidal decomposition of S is

constructed as follows:

• Pass a vertical attachment through every endpoint or point of intersec-

tion

• Each vertical attachement exteneds upwards and downwards until it hit

another segment or if no such segment exist, it extends to infinity

For a set S of point sites, the Voronoi diagram of S is a planar subdivision

such that all points in a region share the same nearest site among S

A randomized algorithms we are interested in this lecture
is an algorithm which will make random choices during the
computation. For example, Quick sort can be viewed as a ran-
domized algorithm if the pivot is selected randomly.

Advantages

• Simpler Structure

– Easy for implementation

– Constant inside the Big-O is small

• Worst-case hardly happen

– more efficient in practice

– Quick-sort is the most efficient sorting algorithm in practice.

Referance Book:
Ketan Mulmuley,
Computational Geometry: An Introduction
Through Randomized Algorithms,
Prentice Hall, 1993

• Lecture notes depict the main ideas

• For more details, please refer to the books and
related papers.

Main topics

•Randomized Incrmental Construction

•Randomized Divided and Conquer

• Their Applications

1. Quick Sort And Search

Input: a set N of n real numbers (distinct)

Output: an ordered sequence of N

Qucik-Sort(N)

1. If |N | = 1, return N .

2. Select a number p from N

3. Let NL be {l | l ∈ N and l < p}
Let NR be {r | r ∈ N and r > p}

4. If |NL| > 0, L = Quick-Sort(NL); else L = ∅

5. If |NR| > 0, L = Quick-Sort(NR); else R = ∅

6. return a seqeuence L, p, R

23, 11, 37, 47, 29, 3, 7, 19

23

11

3

7

19

37

29 47

11, 3, 7, 19 37, 47, 29,

3, 7
7

3, 7 19

3, 7, 11, 19 29, 37, 47

29 47

Expected Time Complexity

• If a subset has k elements, it takes O(k) comparisons.

• If a level has m subsets, N1, N2, . . ., Nm, since they are distinct,

a level needs
∑m

i=1O(|Ni|) = O(n).

• Expected size of NL (or NR)= n
2 ,

expected depth of recursion = O(logn)

• O(n log n) expected time

Sorting Geometric Structure

An Ordered Seqeuence = A Partition of Real Line R

3 7 11 19 23 29 37 47

• Sorting Problem:

Find the partition H(N) of R formed

by the given set N of n points.

• Search Problem:

Associate a search structure H̃(N) with H(N) so that,

given any point q ∈ R,

one can locate the interval in H(N) containing q

quickly, e.g., in logarithmic time.

1.1 Randomized Incremental Version of Quick Sort

S1, S2, . . . , Sn: a random seqeuence of N

N 0 = ∅ N i = {S1, S2, . . . , Si}
H(N 0) is R

H(N i) is the partition of R by N i

Randomized Incremental Construction:

H(N 0), H(N 1), H(N 2),, H(Nn) = H(N).

Fig 2. H(N 2) points in N 2 points in N \N 2

Fig 3. Addition of the third point S3

Conflict List:

For each interval I in H(N i), conflict list L(I) is

an unsorted list of points in N \N i contained by I ,

and l(I) is the size of L(I)

E.g., in Fig. 2, L(I) has four points.

Fact

Each point in N \N i is related to a unique interval in H(N i).

There is a unique edge between a point in N \ N i and its conflicted

interval in H(N i).

I

I1 I2

Adding a point S = Si+1 into N i

1. Find a interval I in H(N i) which contains S.

2. Separate I by S into IL and IR.

3. Compute L(IL) and L(IR) by L(I)

Adding S takes O(l(IL) + l(IR) + 1)

1. Finding I takes O(1) due to the unique edge between S and I in the

conflict list.

2. Separtating I takes O(1) time

3. Computing L(IL) and L(IR) takes O(l(L)) = O(l(IL)+ l(IR)+1) time.

Backward Time Analysis

Inserting Si+1 into H(N i) = Deleting Si+1 from H(N i+1)

Each point S in N i+1 is equally likely to be Si+1.

IL(S): Interval left to S

IR(S): Interval right to S

Expected Time of Adding S:

1
i+1

∑
S∈N i+1 O(l(IL(S)) + l(IR(S)) + 1)

≤ 2
i+1

∑
J∈H(N i+1)O(l(J) + 1)

Each interval are adjacent to at most two points

= O(n
i+1)

Expected Time Complexity of Randomized Incremental Version:∑n
i=1 O(n

i+1) = O(n log n)

1.2 Randomized Binary Tree

N = { 23, 11, 37, 47, 29, 3, 7, 19 }
S1 S2 S3 S4 S5 S6 S7 S8

Divide-and-Conquer Quick-Sort

23

11 37

3 19 29 47

7

Random Binary Tree H̃(N) is defined as follows:

• If N = ∅, H̃(N) is a node corresponding to the whole real line R

• otherwise,

– the root of H̃(N) is a randomly chosen point S ∈ N

– H̃(NL) and H̃(NR) are defined recursively for the havles of R on

the two sides of S, where NL and NR are the sets of points in

N \ S left to and right to S, respectively.

Search Problem:

Given a point q ∈ R, we locate the invertval in H(N) containing q

by applying a binary search on H̃(N).

Expected search time = expected depth of H̃(N) = O(log n)

1.3 History (On-Line)

Randomized Incremental Version of Quick-Sort

through the Random Binary Tree

S1, S2, . . . , Sn is a random seqeuence of N

(23, 11, 37, 47, 29, 3, 7, 19)

23

11

H̃(N 1)

23

11

H̃(N 2)

23

11 37

H̃(N 3)

• Locating the interval using the binary tree

37

23

11 37

3 19 29 47

7

H̃(N 8)

Property: If Sj is the left child of Si, Sj must belong to the left

Interval of Si in H(N i).

Cost of Inserting Sj = Searching which interval Sj is located in

= Length of Search Path

Backward Analysis

For a query pint q, the search cost is analyzed as follows:

• If the search tests Si,

q must belong to the left or right interval of Si in H(N i)

→ probability of testing Si is 2/i

• Expected length of search path is
∑n

i=1 2/i = O(log n)

• Similarly, inserting Si takes O(log i) time

Total Time of Constructing H̃(N):∑n
i=1O(log i) = O(n log n)

This randomized incremental construction through a random
binary tree does not require conflict lists:

An on-line algorithm

history(i)

• H̃(N i)

• Auxiliary Information

– Each internal node of H̃(N i) records the left and right intervals when it

was created.

– Each interval records the creation and the deletion time (if it is dead).

history(i)

• Contains the entire history of construction, H̃(N 0), H̃(N 1), . . . , H̃(Nn).

• Allow searching in H̃(N i) by the auxiliary information.

