5. Random Sampling and Arrangement of Lines

A central concept of statistics is

A random sample is a good estimator for statistical population

The concept of randomized divide-and-conquer Quick-Sort

- Let N be any set of points in the real line.
- If we pick a random element S from N, then S probably divides the line into interval of roughly equal size. The size mean the number of unchosen points lying in the interval.

Random Sampling without replacement

- Given a set N of objects, a r-element subset R of N is a random sample if every element in N is equally likely to be in R.
 - Choose the first element in ${\cal R}$ randomly from ${\cal N}$
 - Choose the seond element in R from the remaining n-1 elements independently and randomly.
 - Repeat the process untail r elements from N are chosen.

An interesting and important question:

Given a set N of n points in the real line, does a random sample R of N of size r divide the real line into roughly equal size?

- Let H(R) be the partition of the real line formed by R.
- For each interval I in H(R), the conflict size of I is the number of points in $N \setminus R$ lying in I.

Is the conflict size of each interval in H(R) O(n/r) with high probability?

Most researchers conjecture the positive answer, but no one can prove it over several centries.

Main Theorem

For a set N of n points on the real line and a random sample R of N of size r, with probability greather than 1/2, the conflict size of each interval in H(R) is $O([n/r] \log r)$.

More generally, for any fixed c > 2 and any $s \ge r > 2$, with probability $1 - O(1/s^{c-2})$, the conflict size of each interval in H(R) is less than $c(n \ln s)/(r-2)$. In other words, the probability of some conflict size exceeding $c(n \ln s)/(r-2)$ is small, $O(1/s^{c-2})$ to be precise.

Proof of Main Theorem

Terminology

- $\Pi = \Pi(N)$ is the set of all pairs the form (p,q) where p, as well as q, is a point in N or a point at infinity.
- A point at infinity means either $-\infty$ or $+\infty$
- σ is any such pair in Π , and thus defines an interval on the real line.
- $D(\sigma)$ is $\{p,q\} \cap N$, and consists of the endpoints of σ not at the infinity. The points in $D(\sigma)$ is said to define σ .
- $d(\sigma)$ is the size of $D(\sigma)$ and is called the *degree* of σ . $d(\sigma)$ is 0, 1, or 2. - d((p,q)) = 2, $d((-\infty, p))$, and $d((-\infty, +\infty))$.
- L(σ) is the set of points in N that lies in the interior of σ. The points in L(σ) is said to conflict with σ
- $l(\sigma)$ is the size of $L(\sigma)$ and called the *conflict size* of σ .
- Π is a configuration space of N
 - An interval $\sigma\in\Pi$ is active over a subset $R\subseteq N$ if σ is an interval of H(R)
 - $-\sigma$ is an interval of H(R) if and only R contains all points in $D(\sigma)$ but no poin in $L(\sigma)$.

Conditional Probability

- Let $R \subseteq N$ denote a random sample of N of size r.
- Let $p(\sigma, r)$ denote the *conditional probability* that R contains no point in conflict with σ , given that it contains the points defining σ .

Claim

$$p(\sigma, r) \le (1 - \frac{l(\sigma)}{n})^{r - d(\sigma)}$$

Intuition

- Since R must contain $D(\sigma)$, the remaining $r d(\sigma)$ can be thought of as resulting from independent random draws.
- The probability of choosing a conflicting point in any such draw is greater than or equal to $l(\sigma)/n$.

Rigorous justification

- \bullet Let R' be $R \setminus D(\sigma)$
- R' is a random sample of the set $N' = N \setminus D(\sigma)$ of size $n d(\sigma)$
- R' is obtained from N' by $r d(\sigma)$ successive random drwas without replacement.
- For each $j \geq 1$, the probability that the point chosen in the j^{th} draw does not conflict with σ , given that no point chosen in any previous draw conflicts with σ , is

$$1-\frac{l(\sigma)}{n-d(\sigma)-j}\leq 1-\frac{l(\sigma)}{n}$$

• Then

$$p(\sigma, r) = \prod_{j=1}^{r-d(\sigma)} 1 - \frac{l(\sigma)}{n-d(\sigma)-j} \le (1 - \frac{l(\sigma)}{n})^{r-d(\sigma)}$$

Proof of Main Theorem(continue)

• Since $1 - l(\sigma)/n \le \exp(-l(\sigma)/n)$, the claim implies $p(\sigma, r) \le \exp(-\frac{l(\sigma)}{n}(r - d(\sigma)))$,

where $\exp(x)$ denotes e^x .

• Since $d(\sigma) \leq 2$,

$$p(\sigma, r) \le \exp(-\frac{l(\sigma)}{n}(r-2)).$$

• If $l(\sigma) \ge c(n \ln s)/(r-2)$, for some c > 1, then

$$p(\sigma, r) \le \exp(-c \ln s) = \frac{1}{s^c}.$$

Combined probability

- Let $q(\sigma, r)$ denote the probability that R contains all points in $D(\sigma)$.
- The probability that σ is active over R is precisely $p(\sigma, r)q(\sigma, r)$.

The probability that some $\sigma \in \Pi$, with $l(\sigma) > c(n \ln s)/(r-2)$, is active over R is bounded by

$$\sum_{\sigma\in\Pi: l(\sigma)>\frac{cn\ln s}{r-2}} p(\sigma,r)q(\sigma,r) \leq \sum_{\sigma\in\Pi: l(\sigma)>\frac{cn\ln s}{r-2}} q(\sigma,r)/s^c \leq \frac{1}{s^c} \sum_{\sigma\in\Pi} q(\sigma,r).$$

Summary

- Let $\pi(R)$ denote the number of intervals in Π whose defining points are in R.
- $\sum_{\sigma \in \Pi} q(\sigma, r)$ is $\pi(R)$.
- For a random sample R of N, the probability that some $\sigma \in \Pi$, with $l(\sigma) > cn \ln s/(r-2)$, is active over R is bounded by

$$\frac{1}{s^c} E[\pi(R)].$$

• Since R has r points, $\pi(R) = \binom{r}{2} + 2r + 1 = O(r^2)$.

$$\frac{1}{s^c} E[\pi(R)] = O(\frac{r^2}{s^c}) = O(\frac{1}{s^{c-2}}).$$

Arrangement

Given a set N of hyperplane in \mathbb{R}^d , the arrangement G(N) formed by N is the natural partition of \mathbb{R}^d by N into faces of varying dimensions together with the adjacencies among them.

- A face of j dimensions is called a j-face
- A *d*-face is called a cell
- A (d-1)-face is called a facet
- A 1-face is called an edge
- A 0-face is called a vertex

General Position Assumption

- No two hyperplane are parallel to each other
- For $2 \leq j \leq d+1$, the intersection among j hyperplane is exactly a (d+1-j)-face

Arrangement in the plane

An arrangement of n lines is one of the simplest geometric structure

• $O(n^2)$ faces in total

Facial lattice of an arrangement

- The lattice contains a node for each face of G(N)
- Each node contains auxiliary information, such as pointers to the hyperplanes containing the corresponding face
- A node for a j-face f is linked to a node for a (j 1)-face g if f and g are adjacent

Fact

Cells of an arragement of lines in the plane does not allows the random sampling technique

• When all lines in N are tangent to the same circle, for any subset R of N, the central cell of the arragnement of R is intersected by all lines in $N \setminus R$.

A cell of an arrangement G(R) does not satisfied the *bounded* degree property.

That is, the collection of cells is not a configuration space.

H(R): the vertical trapezoidal decomposition of G(R)

Bounded Valence

A configuration space $\Pi(N)$ is said to have *bounded valence* if the number of configurations in $\Pi(N)$ sharing the same trigger sets is bounded by a constant

General Form for Main Theorem

Given a set N of n objects, a configuration space $\Pi(N)$ of N with bounded valance, and the maximum degree d of a configuration in $\Pi(N)$, for any random sample R of N of size r, with probability greater than 1/2, the conflict size for each active configurations over R is at most $c(n/r) \log r$, where c is a large enough constant.

More generally, fixed any c > d, for any $s \ge r > d$, with probability 1- $O(1/s^{c-d})$, the conflict size of each active configuration over R is less than $c(n\log s)/(r-d)$

Sketch of Proof:

For the same reasoning, we have the following fact.

Fact

The probability that some $\sigma \in \Pi(N)$, with $l(\sigma) \geq c(\ln s)/(r-d)$, is active over a random sample R is bounded by $E[\pi(R)]/s^c$, where $\pi(R)$ is the number of configurations in $\Pi(N)$ whose defining objects are in R.

$\pi(R) = O(r^d)$

- For each $b \leq d$, there are at most $\binom{r}{b} \leq r^b$ trigger sets contained in R
- Since $\Pi(N)$ has bounded valence, only a constant number of configurations in $\Pi(N)$ share the same trigger set.

$$\frac{E[\pi(R)]}{s^c} = O(\frac{r^d}{s^c}) = O(\frac{1}{s^{c-d}}).$$