
6. Top-Down Sampling

Top-Down Sampling is a divide-and-conquer method of building search

structures based on random sampling.

A randomized binary tree is the simplest search structure based on random

sampling

1. Choose a random point p from the given set N of points

2. p divides N into two subsets, N1 and N2, of roughly equal size

3. Label the root of the search tree with p

4. The children of this root are the recursively built trees for N1 and N2.

General geometric search problem: Given a set N of objects in Rd,

construct the induced complex (partition)H(N) and a geometric search struc-

ture H̃(N) that can be used to answer the queries over H(N) quickly.

• a point location query in a planar subdivision

Assumption

The complex H(N) satisfies the bounded degree property.

• Every face of H(N), at least of the dimension that matters, is defined by

a bounded number of objects in N

• This assumption is needed to make the randome sampling technique

• If partition does not satisfy the assumption, a suitable refinement is needed

– Vertical trapezoidal decomposition for the arrangement.

General Process

1. Choose a random subset R ⊂ N of a large enough constant r

2. Build H(R) and a search structure for H(R)

• Since the size of R is a constant , the search structure is typically

trivial.

3. Build conflicts of all faces of H(R) of relevant dimensions

• The notion of a conflict depends on the problem under consideration.

4. For each such face 4 ∈ H(R), recursively build a search structure for

N(4), which is the set of objects in N in conflict with 4.

5. Build an ascent structure, denoted by ascent(N,R).

• It is used in queries described latter.

The queries are answered as bellow

• The original query is over the set N

• We answer the query over the smaller set R using the trivial search struc-

ture associated with H(R)

• If 4 ∈ H(R) is the answer to this smaller query, we recurisvely answer

the query over the set N(4) of conflicting objects

• After reaching the bottommost face, using the ascent structure

ascent(N,R), we determine the answer over the set N

Arrangment of lines

• N is a set of n given lines in the plane

• G(N) is the arrangement formed by N

• Γ is a fixed triangle in the plane

– At the root level, the vertices of Γ is assumed to be at infinity, i.e.,

Γ = R2

• For any given query point q in Γ, answer the face in the intersection

Γ ∩G(N) containing q

Canonical Triangulation

H(N) is the canonical for G(N) ∩ Γ

• For a (possibly unbounded) convex polygon C, the canonical triangulation

of C is a refinement for C by linking its bottom vertex to its other vertices

(break ties arbitrarily)

• The canonical triangulation for G(N)∩Γ is a refinement for it by applying

the canonical triangulation to each of its faces.

• H(N) can be constructed in O(n2) time and space

• H(N) has the bounded degree

Top-Dowm Sampling for the search structure

1. Let Γ be the root and compute G(N) ∩ Γ

2. Select a random sample R of N of size r, where r is a large enough

constant.

3. Construction H(R)

4. For each triangle 4 ∈ H(R), compute N(4), where N(4) denotes its

conflict list, i.e., the set of lines in N \R intersecting 4.

5. If one triangle of H(R) has a conflict size large than b(n/r) log r, for an

appropriate constant b, repeat step 2–4.

6. For each triangle 4 ∈ H(R), recur the computation on G(N(4) ∩4

7. For each 4 ∈ H(R), associate with every face of G(N(4)) ∩ triangle a

parent pointer to the face containing it in G(N) ∩ Γ.

The construction time without recursive call

1. O(n2) time to construct G(N)

2. O(n) to pick a random sample because r is a constant

3. O(1) to construct H(R) because r is a contant

4. O(n) to compute N(4) for all triangle in H(R) because H(R) has O(1)

triangle

5. The expected number of repetition is O(1), so step2–5 take O(n) expected

time

• With probability at least 1/2, the conflict size of each triangle in H(R)

is less than b(n/r) log r

• If the probability of success in each trial is at least 1/2, the expected

number of required trails is O(1)

6. O(r2) recursive calls and the size of each call is at most O(b(n/r) log r)

7. O(n2) to make parent pointers (Could be an Exercise)

Point Location using the search structure

For a query point p in Γ, locate the face in G(N) ∩ Γ) that contains p

1. Locate the triangle 4 in H(R) containing p

• O(1) time because H(R) has O(1) triangles

2. Recursively locate the face of G(N(4))4 containing p

3. Use the parent pointer associated with the recursively found face to tell

the face of G(N) ∩ Γ) containing p

The query time is O(logn)

• Let q(n) be the query time of locating a point in an arrangement formed

by n lines.

• If n is less than a threshold, q(n) = 1

• Otherwise,

q(n) = O(1) + q(b
n

r
log r)

• If r is sufficiently large constant, the statement follows.

The expected construction time is O(n2+ε)

• Let t(n) be the expected time to construct the search structure for an

arrangement formed by n lines

• If n is less than a threshold, t(n) = 1

• otherwise,

t(n) = O(n2) +
∑
4∈H(R)

t(|N(4)|) = O(n2) + O(r2) · t(bn
r

log r).

• The depth of recursion is O(logr n)

• t(n) = n2clogr n, where c is a constant that is sufficiently larger than b and

the constant within the Big-Oh bound

• For any real number ε > 0, we can choose r large enough such that,

t(n) = O(n2+ε).

(The last two derivations will be an exercise)

The size of the search structure is O(n2+ε)

• It follows from the same derivation as the construction time but the com-

plexity is deterministic.

Theorem
For every arragement of n lines in the plane and for any real
number ε > 0, one can construct a point location structure of
O(n2+ε) size, guaranteeing O(log n) query time, in O(n2+ε) ex-
pected time

