
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN
INSTITUT FÜR INFORMATIK I

Elmar Langetepe

Online Motion Planning

MA INF 1314

Summersemester 2016

Manuscript: Elmar Langetepe

Chapter 1

Labyrinths, grids and graphs

In this section we first concentrate on discrete environments based on grid structures. For the grid struc-

ture we consider an agent that can move from one cell to a neighbouring cell with unit cost. We start

with the task of searching for a goal in a very special grid environment. After that we ask for visiting all

cells, which means that we would like to explore the environment. For this task the grid environment is

only partially known, by a touch sensor the agent can only detect the neighbouring cells. The agent can

build a map. Exploration and Searching are closely related. If we are searching for an unknown goal,

it is clear that in the worst-case the whole environment has to be explored. The main difference is the

performance of these online tasks. As a comparison measure we compare the length of the agent’s path

to the length of the optimal path under full information. Thus, in the case of searching for a goal, the

comparison measure is the shortest path to the goal.

At the end of the section we turn over to the exploration task in general graphs under different

additional conditions.

1.1 Shannons Mouse Algorithm

Historically the first online motion planning algorithm for an autonomous agent was designed by Claude

Shannon [Sha52, Sha93] in 1950. He considered a 5×5 cellular labyrinth, the inner walls of the labyrinth

could be placed around arbitrary cells. In principle, he constructed a labyrinth based on a grid environ-

ment; see Figure 1.1.

The task of his electronical mouse was to find a target, i.e. the cheese, located on one of the fields of

the grid. The target and the start of the mouse were located in the same connected component of the grid

labyrinth. The electronical mouse was able to move from one cell to a neighbouring cell. Additionally, it

could (electronically) mark any cell by a label N, E , S, W which indicates in which direction the mouse

left the cell at the last visit. This label is updated after leaving the cell. With theses abilities the following

algorithm was designed.

Algorithmus 1.1 Shannons Maus

• Initialize any cell by the label N for ’North’.

• While the goal has not been found:

starting from the label direction, search for the first cell in clockwise order that can be visited.

Change the label to the corresponding direction and move to this neighbouring cell.

Sutherland [Sut69] has shown that:

Theorem 1.1 Shannon’s Algorithms (Algorithmus 1.1) is correct. For any labyrinth, any starting and

any goal the agent will find the goal, if a path from the start to the goal exists.

4 Chapter 1 Labyrinths, grids and graphs

Figure 1.1: Shannons original mouse labyrinth.

S

T

Figure 1.2: An example of the execution of Shannons Algorithm.

Proof. We omit the goal and show that any cell in the connected component of the start will be visited

infinitely often. !

Exercise 1 Formalize the above proof sketch!

As shown in Figure 1.2 the path of Shannons Mouse is not very efficient.

1.2 Intuitive connection of labyrinths, grids and graphs

For a human a labyrinth consists of corridors and connection points. In this sense the environment for

Shannons task can be considered to be a labyrinth. Obviously any such labyrinth can be modeled by a

planar graph.1 More precisely the environment for Shannons task is a grid graph. Figure 1.3 shows the

corresponding intuitive interpretations.

For any intuitive labyrinth there is a labyrinth-graph. On the other hand for any planar graph we can

build some sort of labyrinth. This is not true for general graphs. For example the complete graph K5 has

no planar representation and therefore a correspondance to a labyrinth does not exist.

1.3 A lower bound for online graph exploration

We consider the following model. Assume that a graph G = (V,E) is given. If the agent is located on a

vertex it detects all neighbouring vertices. Let us assume that moving along an edge can be done with

1A graph, that has an intersection free representation in the plane.

1.3 A lower bound for online graph exploration 5

O

B

N

L

M

G HC

D

J

I

F

E

(ii) Labyrinthgraph (iii) Gittergraph(i) Labyrinth

AB C F I

H

G

N

L

MD

A E J

K

O

K

Figure 1.3: Labyrinth, labyrinth-graph and gridgraph.

unit cost. The task is to visit all edges and vertices and return to the start. The agent has the ability of

building a map. If we apply a DFS (depth first search) for the edges we will move along any edges twice.

DFS can run online. The best offline strategy has to visit any edge at least once. In this sense DFS is a

2-approximation.

The comparison and approximation between online and offline is represented by the following con-

cept. A strategy that runs under incomplete information is denoted as an Online–Strategyn. On the

other hand an Offline–Strategyn solves the same task with full information. In the above example the

offline strategy is the shortest round trip that visits all edges of the graph.

The performance measure for Online-Algorithms is the so-called competitive ratio.

Definition 1.2 (Sleator, Tarjan, 1995)

Let Π be a problem class and S be a strategy, that solves any instance P ∈ Π.

Let KS(P) be the cost of S for solving P.

Let Kopt(P) be the cost of the optimal solution for P.

The strategy S is denoted to be c–competitive, if there are fixed constants c,α > 0, so that for all

P ∈ Π

KS(P)≤ c ·Kopt(P)+α

holds.

The additive constant α is often used for starting situations. For example if we are searching for

a goal and have only two unknown options, the goal might be very close to the start, the unsuccessful

step will lead to an arbitrarily large competitive ratio. This is not intended. Sometimes we can omit the

additive constant, if we have additional assumptions. For example we can assume that the goal is at least

distance 1 away from the start.

As already mentioned DFS on the edges visits any edge at most twice. There are graphs where the

optimal offline solution also has to visit any edge twice. For such examples DFS is optimal with ratio 1.

Now we are searching for a lower bound for the competitive ratio. That is, we would like to construct

example such that any possible online strategy fails within a ratio of 2.

Theorem 1.3 (Icking, Kamphans, Klein, Langetepe, 2000)

For the online-exploration of a graph G=(V,E) for visiting all edges and vertices of G there is always an

arbitrarily large example such that any online strategy visits roughly twice as much edges in comparison

to the optimal offline strategy. DFS always visit no more than twice as much edges against the optimum.

[IKKL00]

Proof. The second part is clear because DFS visits exactly any edge twice. Any optimal strategy has to

visit at least the edges.

6 Chapter 1 Labyrinths, grids and graphs

The robot should explore a gridgraph and starts in a vertex s. Finally, the agent has to return to s. We

construct an open corridor and offer two directions for the agent. At some moment in time the agent has

explored ℓ new vertices in the corridor. If this happens we let construct a conjunction at one end s′ of the

corridor. At this bifurcation two open corridors are build up which run back into the direction of s. If the

agent proceeds one of the following events will happen.

1. The agent goes back to s.

2. The agent has visited more than ℓ+1 edges in one of the new corridors.

Let ℓ1 denote the length of the part of the starting open corridor into the opposite direction of s′. Let

ℓ2 and ℓ3 denote the length of the second and third open corridor.

We analyse the edge visits |SROB| that an arbitrary strategy SROB has done so far.

1. |SROB| ≥ 2ℓ1 +(ℓ− ℓ1)+ 2ℓ2 + 2ℓ3 +(ℓ− ℓ1) = 2(ℓ+ ℓ2 + ℓ3), see Figure 1.4. Now we close the

corridors at the open ends. From now on the agent still requires |SOPT | = 2(ℓ+ ℓ2 + ℓ3)+ 6 edge

visits, where SOPT is the optimal strategy if the situation was known from the beginning. Thus we

have: |SROB|≥ 2|SOPT |−6.

l3

l1 l2

s
s′

Figure 1.4: The agent return to s

2. W.l.o.g. the agent has explored ℓ+1-ten vertices in corridor 3. We have |SROB|≥ 2ℓ1 +(ℓ− ℓ1)+
2ℓ2+(ℓ+1). We connect corridor 3 with corridor 1(see Figure 1.5) and close corridor 2. The agent

still requires ℓ+ 1+ 2(ℓ2 + 1)+ (ℓ− ℓ1) edge visits; in total at least 4ℓ+ 4ℓ2 + 4 = 4(ℓ+ ℓ2)+ 4

edge visits. From |SOPT |= 2(ℓ+1)+2(ℓ2+1)= 2(ℓ+ℓ2)+4 we conclude |SROB|≥ 2|SOPT |−4>
2|SOPT |−6.

l

l1 l2

s′

s

Figure 1.5: The agent has visited ℓ+ 1 vertices in corridor 3.

We have |SROB|/|SOPT | ≥ 2− 6/|SOPT |. We also have |SOPT | ≥ 2(ℓ+ 1) and conclude 2− 6/|SOPT | >
2−6/2ℓ= 2−3/ℓ. For arbitrary δ > 0 we choose ℓ= ⌈3/δ⌉ and conclude |SROB|/|SOPT |> 2−δ. !

1.3 A lower bound for online graph exploration 7

Remark 1.4 There are always examples so that the optimal exploration tour visits any edge twice.

Corollary 1.5 DFS for the Online-Edge-Exploration of general graphs is 2–competitive and optimal.

Exercise 2 Show that the same competitive ratio holds, if the return to the starting point is not required.

Exercise 3 Consider the problem of exploring the vertices (not the edges) of a graph. If the agent is

located at a vertex it detects the outgoing edges but along non-visited edges it is not clear which vertex

lies on the opposite side. Does DFS applied on the vertices result in a 2-approximation?

