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Chapter 3

Online searching for objects

In this chapter we collect several results that consider the task of searching for an unknown object.
Different from the navigation task, the position of the object is not known. The object is detected due to
the sensor abilities of the agent.

For example one might consider the case that the agent is equipped with a sight system. For example
inside simple polygons we can assume that the agent is point-shaped and the visibility information is
given by the visibility polygon.

Definition 3.1 Let P be a simple polygon and r a point with r € P. The visibility polygon of » w.r.t P,
Visp(r), is the set of all points g € P, that are visible from r inside P, i.e., the line segment 7q is fully
inside P.

We start our consideration by searching for a goal inside a corridor polygon. The polygon can also
be modelled by a line. Note that the visibility information is not helpful, if the corridor has many small
kinks or caves, where the goal might be hidden.
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Figure 3.1: Searching for a door along a line.

[T

i

Figure 3.2: In which corridor lies the target point?
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3.1 2-ray search and the Theorem of Gal

As a special case we consider the problem of searching for a point along a line (or on 2 rays emanating
from a starting point). This problem is also known as the lost-cow or cow-path problem; see citekrt-
sueor-93. The cow is searching for the hole in the fence or an agent is searching for a door along a wall.
Form the starting position neither the direction nor the distance d to the goal (door/hole) is given. We
assume that the agent has no sight system or as mentioned above at any point on the line the sight is very
limited (for example by many kinks). Thus the agent detects the goal only by visiting the goal exactly.

The agent cannot concentrate on one direction, because the goal might be on the opposite side.
Any reasonable strategy successively changes the direction and can be described by an infinite sequence
(x1,X2,x3,...) with x; > 0. The agent runs x steps to the right, returns to the start, runs x, steps to the
left, returns to the start, runs x3 > x; steps to the right again and so on; see Figure 3.1. For the searching
depth x; we can assume that they are monotonically increasing on each side, i.e., x;12 > x;.

We compare the length of the agents path to the shortest path to a goal. It is sufficient to consider the
local worst-case situation. In the beginning the agent returns to the start by path of length 2x;. If the goal
is located arbitrarily close on the opposite side, there is no competitive strategy since for any C > 0 there
will be an € > 0 such that 2x; + € > C- € holds. Therefore we require an additive constant in this case.
Alternatively, we assume that the goal is at least step 1 away from the start. These two interpretation are
equivalent.

Exercise 18 Show that for the 2-ray search problem, the following interpretations are equivalent: A
strategy is C competitive with some additive constant A. A strategy is C competitive without additive
constant but the goal is at least step B away from the start.

We assume that the goal is at least one step away from the start. The local worst-case for the compet-
itive ratio is that we slightly miss the target at distance d by an €, perform another turn on the opposite
side and met the target at distance d + €; see Figure 3.1. Now the task is to find a sequence (x,x2,x3,...)

such that
k+1

Z 2x;i +x; < C-xy
i=1
holds for all £ and C is as small as possible. This means that

):k+1 2% + x . 2):f<+11 X
Xk Xk
has to be minimized for all k.

A reasonable stratagy doubles the distance all the time, that is x; = 2'; see Figure 3.1. Such a doubling
heuristic is indeed optimal as shown in [BYCR93] and also in [Kle97]. The competitive ratio is bounded
by C =09.

Form Y*!x' = )‘k 1 _ 1 we conclude
which is attained asymptotlcally

In the context of Search Games Gal [Gal80] has shown that under certain condition such functionals

ol gk g 4
T T T T

— % < 4 and attain 9 as the overall ratio

F(fis fose ooy firn) i= L fl i can be minimized for all k by an exponential sequence f; = a' for some
a > 1. Here X = (f1, f»,...) is a sequence of positive values f; and the functional F; depends on k + 1
successive entries of X. We can also write F(f1, f2,...) statt Fx(f1, f2, ..., fis1) it the number of entries
used is clear from the context. We are searching for an optimal sequence X. More precisely: The
supremum of F(X) over alle k gives the perfomance of X (it need not be a maximum) and we are
searching for a sequence X that gives the infimum on all such suprema (it need not be a minimum). Thus
we are searching for X such that

irylfsup Fi(Y)=Cund supF(X)=C.
k k

The following general result helps to optimize functionals in the sense explained above. Ee do not
give a formal proof for it.
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Theorem 3.2 (Gal, Alpern, 2003)
Given a sequence of functionals Fy(X) for all k > ko and a sequence X = (x1,x2,x3,...) with x; > 0. For
X let k+ i be the largest Index, so that Fy(X) depends on xi.;.
For two sequences X = (x1,x2,x3,...) and Y = (y1,y2,y3,...) let X +Y = (x; + y1,%2 + y2,x3 +
V3,...) and o- X 1= (0L X1, 00 X0, 00 X3,...).
If Fy, fulfils the conditions:
(i) Fy ist stetig,
(ii) Fy ist unimodal: Fi(o-X) = Fi(X) und F(X +7Y) < max{Fi(X),F(Y)},

(iii)
lim inf F; ] ] ] 1 li inf F( ])
im in —_— ., = lim 1n €htis Chtit1y--, €]
et k ak+lvak+l_17 7a7 T £1550 k+is Ck+i—1> s €1y )
(iv)
lim inf £ (1,a,a2,...,ak+’) —lim  inf  F(1,E1E0e Ehd)s
a—0 €pti Ektim1ye-,E170

(V) Fig1(fi,-- s fovier) = Fl(fos - s frvign):
Then

sup Fi(X) > infsup Fy(A,)
k a i
where A, = d°,a',a%,... und a > 0. [AGO3]

The Theorem says that due to the correctness of some natural conditions the functionals F; can be
minimized for all £ by an exponential sequence. We can apply the Theorem on the 2-ray search problem

and have to show that the requirements hold for Fy(fi, f2,...) := Y fl L

Also unimodality holds. We have

Obviously, Fi is continuous.

Loiefi . L Additionally, from the general statement “ > < <:> atc (shown by simple
ofe T fie T Y, g d+b y p

equivalence) we conclude that for two sequences X = (xl,xg,x3, ) and Y = (yl, ¥2,Y3,...) we have

Fi(X +Y) < max{Fy(X),F(Y)}. The corresponding limits for the special sequences (€&,€x_1,...,€1,1)

and (1,€,¢€,,...,&), respectively run to infinity and the statemens (iii) and (iv) trivially hold. Also
statement (v) holds because on the left hand side there is an additional number in the numerator. Alto-

k+1 .
Ltk fk 11 is minimized by f; = a'. Therefore, the remaining task is to find the best value for a. From
a2 1

gether,

2
Zk+1 — 1 and the fact that a* has to increase arbitrarily we conclude that f(a) := - has to
be mmlmlzed By analytic means we obtain a = 2 as the optimal value for minimization.

3.1.1 Generalization to m-rays

We can easily extend the problem by considering m corridors emanating from a common starting point
which gives the so-called m-ray-search problem; see Figure 3.2. If we consider the situation as searching
for a target point inside a polygon, we can already state that this problem is not competitive in general.

Assume that the caves at the end of the m corridors have distance 1 from the start. The agent has
to look inside any cave and the adversary places the target in the last cave. This gives a path length
of 2(m — 1)+ 1 versus the shortest path of length 1. So for any C there exists a polygon such that no
strategy can guarantee a competitive ratio smaller than C. We just choose the m-corridor polygon for
C < 2(m—1)+ 1. This means that the optimal competitive ratio for m rays should depend on m.

So we consider a fixed m and m rays that emanate from a common starting point s. The agent has no
sight system and detects the goal only by an exact visit. We make use of the following notations. By f;
we denote the j-th step where the agent visits some ray at depth f;. Let J; denote the index of the next
visit of this ray. We require this index for describing the local worst case situation. So let (fj,J/;) be the
corresponding pairs for all j. Now the performance of a strategy (f1, f2,...) obviuously is given by

v f
14+2==——
ap (14252
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In order to apply the Theorem of Gal we assume that the rays are visited in a periodic order (J; =
J +m) and with overall increasing depth (f; < fj;1). Figure 3.3 shows an example with some steps for

ktm—1 4
m = 4. Now we have to minimize Fi(fi, f2,...) := % over all k.

By the same arguments as before Fj fulfills the requirements of Theorem 3.2 and we conclude
sup, Fx(X) > inf, sup, Fi(A,) for A, = a®,a',a?,... and a > 0. In analogy to the 2-ray case we attain
a function f(a) independent from k and f(a) has to be minimized. This optimization is a given as an
exercise.

and show that the (optimal) compet-
m \ym—1
m—1 ) .

k+m—1 ¢
Exercise 19 Minimize the functionals Fi(f1, f2,...) = %

itive ratio of the m-ray search problem for periodic and monotone strategies is C = 1+ Zm(

An optimal exponential strategy a' for this case is given by a = -."5.

Figure 3.3: The first steps of a periodic and monotone strategy for m = 4 rays.

The above optimization was a simple application of Theorem 3.2. The main problem is that we
assumed that there is an optimal strategy that is periodic and monotone. This is an instance of a more
general problem. There are some motion planning problems where the existence of periodic and mono-
tone optimal solutions is not known. The best upper bounds for competitive ratios are often achieved
by the above assumption. Lower bounds are much harder to achieve. For the m-ray configuration the
existence of periodic and monotone optimal solutions can be shown.

Lemma 3.3 There is always an optimal competitive (with the best overall achievable ratio C) m-ray
search strategy (f1, fa,...), that visits the rays in overall increasing depth and in periodic order.

Proof. Assume that there is an arbitrary C-competitive strategy (fi, f2,...) with pairs (fj,J;) for the
smallest attainable ratio C. First, we show that we can rearrange this strategy to a monotone C-competitive
strategy (f7,f3---), i-e., fj < f} holds for all j.

Let j be the smallest index j such that f; > fj;. The performance (C —1)/2 for the strategy
(f1,f2,...) is represented in

e
Z fi < Tfj . forindex j 3.1)
i=1
ol |

Z fi < Tfj+1 . forindex j+ 1 (3.2)

i=1
Szl c—1
Z fi < 5 fi ¢ forindex ! # j,j+1 (3.3)
i=1

We exchange f; and fj | by fj’. := fj+1 and f]’. +1 := fj. What happens to the performance above?
Inequality (3.2) remains true, because we only increase the right hand side. If J; 1 > J; holds, also the
first inequality (3.2) is maintained, because the original second inequality (for f;;1 on the right hand
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side) hold and the left hand side of inequality (3.1) is even smaller now. The remaining inequlities (3.3)
are not concerned from this exchange.

The remaining task is to handle the case J; | < J;. Here we have the problem of maintaining in-
equality (3.1). To overcome this problem we exchange the role of the rays of f; und f;, directly after
the index j+ 1 completely. After index j+ 1 any original visit of the ray of f; is no applied to the ray
of f; and vice versa. Of course the exchange f]’. = fj+1 and f]’. +1 = fj is maintained. Now we do not have
a problem with inequality (3.1) any more since the ray is visited early enough now. Inequality (3.2) is
also maintained because we have the same next visits as before. Inequalities (3.3) do not change, they
are not influenced by the exchange. In principle for J;,| < J; and f; > f;;1 we exchange two complete
rays beginning with index j.

For example if f; > f> holds and J; = 7 for ray K and J, =5 for ray L, then after the exchange we
visit K by f{ := f» then L by f} := fi, later K by f% := f5 and L by f; := f7 and so on. Figure 3.4 shows
an example.

Figure 3.4: A non-periodic and non-monotone strategy. First, we exchange the values f; and f> only. But since
J1 =7 > J> = 5 holds we fully exchange the role for the corresponding rays K and L.

Altogether, we obtain a C-competitive strategy (f{, f3,...) with f; < f}, for all j by applying the
above exchange successively.

Finally, we construct a periodic strategy by the same idea. Consider a monotone strategy with a first
index j such that J; . < J;. We exchange the role of the corresponding rays after step j+ 1, which
means that f; and fj;1 remain on their place. Now J7, | > J% holds. The ray with smaller f; is visited
earlier which maintains the ratio, the ray with next at visit J; s visited later now but the original strategy
maintains the ratio for the corresponding sum with f; and we have f; on the right hand side now. All
other inequalities are not concerned.

Now after this change it might happen that some the monotonicity after step j+ 1 is no longer given.
Then we apply the first rearrangement again and so on.

Altogether we obtain a monotone strategy with J;,1 > J; for all j and the same ratio C. Trivially, if
Jj+1 > J; holds for all j, this can only mean that J; = j +m holds for all ;. O
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