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3.3 Searching in street polygons 75

slightly misses the goal while visiting ray i up to distance xi. Instead, it finds the goal at step x;, on ray i
arbitrarily close to Bix. Either we have x;, > Brxy; that is, the searcher discovers the goal in distance x;,
on ray i and moves x;, — Bxxx to the goal, or we have x;, < Byx. In the latter case, the searcher moves
Bixx — xy, from x;, and finds the goal by accident. In both cases, the searcher moves |x;, — Bixx| in the
last step. Altogether, the competitive factor, C(S), is bigger than

g, — Brove| + L2 By — xi+ \/ (Bixi)? — 2Bixixi1 cOSYijg1 + X7,

Brxk

2n
.

By simple trigonometry, the shortest distance from B;x; to a neighboring ray is given by B;x;sin
Fortunately, this distance is smaller than the distance

\/(Bixi)2 — 2BixiXif1 COS Vi1 + X7

to any other ray. Thus, we have
Ji—1
C(s) > =L P g 21
Brxk n

Jp—1
Altogether, we have to find a lower bound for % where J; denotes the index of the next visit of the
ray of x; and f; = B;x; denotes the search depth in step i. Fortunately, this problem is the same problem
as in the competitive analysis for the usual m-ray problem where the searcher can move only along the
rays. It was shown in Lemma 3.3 (see also Gal [Gal80] and Baeza-Yates et al. [BYCR93]) that for this
problem there is an optimal strategy that visits the rays with increasing depth and in a periodic order; that
is, J = k+nand i = k. Applying Theorem 3.2 the best achievable strategy is given by f; = (n/(n—1))".

Altogether, this results in a function
n \".2n
—-1 in=—
(n )<n— 1> sin —

for n rays. We can make n arbitrarily big because our construction is valid for every n. Note that we also
have a lower bound for the problem of searching a point in the plane; this lower bound is close to the
factor that is achieved by a spiral search.

Theorem 3.11 For the ray search problem there is no strategy that achieves a better factor than

n—yoo n—1

"o
1im(n—1)< & ) sin —~ = 17.079...
n

Additionally, every strategy for searching a point in the plane achieves a competitive factor bigger then
17.079... (the optimal spiral achieves a factor of 17.289... [Gal80]).

3.3 Searching in street polygons

Now we consider a special class of polygons, such that a competitive search still can be performed. By
the m-ray search problem we already know that a constant competitive strategy for searching a point in
arbitrary polygons does not exist.

The following polygons resembles streets or rivers where the path to the endpoint is not arbitrary
although the path can make many windings and there are many caves where the goal might be loacated.
Formally, we define a street polygon as follows:

Definition 3.12 Let P be a simple polygon with two points s and ¢ on the boundary. P is denoted as a
street (polygon), if the two boundary chains P; and Pk of P between s and ¢ are weakly visible, i.e., any
point from Py sees at least one point from Pg and vice versa. [Kle91]
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Figure 3.17: A street polygon.

Figure 3.17 shows an example. The main idea is that the shortest path from s to ¢ also sees the
boundary chains. Intuitively, if you use a street efficiently, you will always see the boundary chains.

Many structural properties have been proved for street polygons. For example, for a given polygon
P one is interested on all possible pair of points (s,7) such that P is a street polygon. Surprisingly,
this problem can be computed in linear time; see [THL98, DHN97]. In this section we consider the
searching problem. That is, the start point s is given, the agent is equipped with a vision system and we
are searching for a target #. The only information is, that P is a street for s and . Against the shortest
path to t we are searching for a competitive strategy with small ratio.

Figure 3.18: Lower bound for searching the target 7.

A lower bound for the ratio in our problem can be constructed as follows.

Theorem 3.13 (Klein, 1991)
There is no strategy that finds the target t in a street with a path of length smaller than \/2 - Topt. The
competitive ratio is at least V2. [Kle91]

Proof. Consider Figure 3.18. The agent is located at s andsees f; and t,. The target 7 lies behind one
of them but the agent can only detect ¢ if the line between #; and ¢, is visited. Then the agent can move
to t. If the agent visits the segmet between 7, and ¢, to the left (right) of the midpoint m, the target is
positioned at the right (left). Thus the best the agent can achieve is moving directly to m. Thus we have
(where € — 0):

|7TfR0b| 2
TlRob| =2 und == =2
sl ol V2

d

In search of  we can make use of some structural properties. Consider Figure 3.19(i). The agent is
located at s and does not see the caves (the shaded parts). A cave is generated by a corresponding reflex
vertex” of the polygon. We can subdivide the current cave generating reflex vertices into the set of left

ZVertices, with inner angle > T.
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(ii)

Figure 3.19: Typical situations for the task of searching the target in a street polygon.

reflex vertices (the cave is to the left) and right reflex vertices (the cave lies to the right). We call the
vertices left or right reflex vertices, respectively.

Furthermore, we can consider the left reflex vertices in clockwise and the right reflex vertices in
counter-clockwise order. One of these sequences can also be empty; in Figure 3.19(ii) there are no right
reflex vertices.

We would like to argument that the unknown target # can only be located behind the rightmost left
reflex vertex, say v;, or the leftmost right reflex vertex, say v,. The target cannot be located in one of
the other caves. Assume that this is not the case. Assume that for example in Figure 3.19(i) the target is
in the cave below v;. In this case there is a point « on the right chain closely after v; that does only see
points on the right chain. This means that any reasonable strategy can concentrate on the current triangle
of ¢, v; and v,, where c is the current location of the agent. It only makes sense to run into this triangle
and let the opening angle at ¢ increase.

If there is only one vertex v; or v,, it is clear that the target can only lie behind this remaining vertex
and any reasonable strategy move directly to this vertex. It is also clear the the shortest path to the target
has to run over this vertex. The same holds, when the target gets visible. The agent directly moves toward
it.

Formally, we consider the following cases or events while the agent moves into the triangle of c, v,
and v,.

e The target becomes visible. The agent moves toward it.

e The cave behing vy or v, becomes visible and does not contain the target; as in point ¢ in Fig-
ure 3.19(i). The goal has to be behind the remaining vertex, the agent directly moves toward it.

e Behind the current vertex v, or v, another left or right reflex vertex becomes visible. For example
v% appears behind v,. In this case the current left reflex vertex changes from vy to v?. The agent
runs into the triangle of c, v% and v,

1.2 .3

The last event successively builds segments of convex chain constructed form reflex vertices v;,vj,vy, ...

and v! v2 V3. ,v{ to the left and to the right starting from s. The agent only moves inside these two
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Figure 3.20: A funnel polygon.

chains. Therefore for simplicity we simply forget the original caves and only consider such funnel situ-
ations or so called funnel polygons. Beginning from s we have two convex chains that are finally closed
by a segment #; and ¢, as shown in Figure 3.20. We assume that the current goal is either behind #; or t,.
Actually there are two also caves behind #; and ¢, Altogether the funnel polygons will invoke the same
path as in the original polygon with caves.

These funnel situations are the only situations that can provoke a detour. If one such situation is
resolved, either the goal is reached or the agent is located at a point on the shortest path to the goal. This
means that we can consider this situation as the main challenge. If we can guarantee a competitive ratio
of C for any single funnel, we can combine the path to a C-competitive strategy in total.

Therefore we concentrate on such polygons.

Definition 3.14 A simple polygon is constructed by two convex chains P and Py starting at a convex
vertex s. The polygon can be closed by the segement 7,z of the endpoints of the chains; see seeFig-
ure 3.20. such a polygon is denoted as a funnel (polygon),

Another important observation for the exploration of the funnel is, that the opening angle ¢ for the
current position ¢ and the current active reflex vertices vy und v, will increase monotonically for any
reasonable strategy. The agent starts with a opening angle ¢g at s and finally we will reach 7,7, with
opening angle 180°. Therefore it is quite natural to describe or parameterise a strategy by the opening
angle ¢.

First, we define a more general lower bound dedicated to the opening angle 1 ¢. We can generalize
Theorem 3.13 as follows:

Lemma 3.15 For a funnel polygon with opening angle ¢ < T there is no strategy that has smaller path
lenght than Ky - |Kop| against the shortest path to the goal, where

Ky :=+/1+sino.
Any strategy is at least Ky competitive.

Proof. Consider Figure 3.21. By the sam argument as in the proof of Theorem 3.13 the best an agent
can do is moving directly to the midpoint m. Any other movement results in a larger detour since we can
place the target afterwards. Now the agent sees the target and moves toward it. 3. For ¢ < T we have

cos? 4 £sind
Tl L0y RO /T sing,

|Topt| a

3The path of length € from v, orv, to f need not be considered
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Figure 3.21: Generalized lower bound.

Note that for the final opening angle ¢ = 7 and Ky = 1 the agent will always move corretly, since
the target is visible now. For ¢ = § we have the ratio Ky = /2 as in Theorem 3.13. For 0 < ¢ < 7 the
function K gives a curve that starts at 1 rises up monotonically to V2 at 7 and decreases monotonically
toward 1 at 7.

Assume that the agent explores a funnel starting from s with opening angle ¢ and follows a path
with monotonically increasing opening angles until 77, is visited and ¢ = 7 holds.

For % <01 < 02 we have Ky, > Ky,, and the competitive ratio for the overall exploration is dominated
by the smaller angle. For ¢; < ¢, < 7 we have Ky, < Ky, < /2, the ratio is dominated by the larger
opening angle If the agent starts from an opening angle ¢o < 7 along a path to angle ¢ = & there will
always be a point such that the opnening angle ¢ = 7 is attained. Therefore the worst case ratio V2 is
always included.

It seems to make sense to consider the case ¢o < § and ¢o > 7 separately. We start with ¢o > 7. We
already have a successful strategy for ¢ = w. The following idea is that we apply a backward analysis
that tells us how to prolong a successful strategy for opening angle ¢, to a successful strategy for opening
angle ¢; < ¢,. By the following lemma we design a requirement for any path w from angle ¢; to ¢,.

Lemma 3.16 Let I1 be a strategy that can reach the target of any funnel polygon with opening angle
0 > % by competitve ratio Ky,. We can extend this strategy to a Ky, competitive startegy for funnel
polygons with opening angle ¢, with ¢, > ¢y > %, if the path w between the two corresponding points
fulfils the length condition Equation 3.9 for the current situation as depicted in Figure 3.22.

. Vr

Figure 3.22: A path w from p; with angle ¢; to p» with angle ¢,.

Proof. We consider a triangle with opening angle ¢;, start point p; and a path w to a point p, with
opening angle ¢»; see Figure 3.22. From p, the agent can use the strategy I1 for the angle ¢, which is
known by assumption. ITis K, competitive. Let us assume that during the movement w the vertices vy
and v, do not change.

Let ¢; and ¢, denote the distances from p; and p; to vy, as depicted in Figure 3.22, r; and r, are
defined analogously. If the goal lies behind v, we can assume that the overall path length for 71:;J , from p;
to ¢ is:

T, | < |+ Koy - 2.
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We would like to guarantee that the overall strategy is Ky -competitive, therefore we require: Ky, =
|7T;,l | > ‘W‘+K¢2~€2
|n0pt‘ - él

, also
K¢1 by > ‘W‘ +K¢2'€2'

Analogously, if the goal is behind v,, we require Ky, - 1 > [w|+ Ky, - 1.
If we can guarantee that the path w from p; to p; fulfils the length condition

‘W‘ < min{K¢]€1 —K¢2€2 s K¢lr1 —K¢2r2}, (39)

we conclude that the overall strategy starting at p; attains a competitive ratio of K, for the funnel with
opening angle ¢;.

Figure 3.23: At p> a new left reflex vertex is detected.

Now it is clear that from time to time the reflex vertices in the funnel will change. The path w and the
condition Equation 3.9 should still guarantee the above conclusion. Therefore we consider the situation
that condition Equation 3.9 if fulfilled but precisely at p, there is a change of the reflex vertices as shown
in Figure 3.23. In p, behind v, a new left reflex vertex v/, appears. Since Equation 3.9 holds we can
conclude:

w| < Ko li —Kp,la
= Kq)lgl _K¢2€2 +K¢2€/2 _K¢2€/2
< Ko (L1 4 05) — Ky, (02 +05) (3.10)

The last inequalityl is true, since from Lemma 3.15 for ¢, > ¢; > J we have Ky, < Kj,. Note that
01+ 0, respectively ¢, + ¢/, denote the lengths of the shortest paths from p; respectively p; to vj,. Equation
Equation 3.10 says that the condition Equation 3.9 takes care that also for changes of the reflex vertices,
we have obtain a Ky, competitive strategy at p O

Assume that Equation 3.9 holds for all small changes of opening angles for the overall path W from
S t OPend, We conclude

|W| S rnin{ K¢0 . |PL| — anEnd N K(])o . |PR| — Kannd }
Altogether we have a Ky, competitive strategy in this case.

Now it is sufficient to guarantee that the agent fulfils Equation 3.9 during the movements. The
idea of fulfilling this requirement is as follows: The portions Ky, ¢1 — Ky,¢> and Ky, — Ky, > somehow
express how many path length w we can use in the next step for the left or the right location of the goal,
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respectively. Since we do not know where the target will be at the end, we do not want to let one side
have an advantage at this stage.
Therefore we would like to guarantee that both values are the same. This gives

K¢2(€2—r2) :Kq)l(gl _rl)'

Fortunately, by this requirement we indeed define a special curve for any starting situation with angle ¢q
and length [y and rg. Let A = K, (o — ro) The curve that fulfils the above equation all the time is given

by
[} 2
X(0) = %-1i°:i;¢-\/<1+tan§> e
1 A?
) = §.C0t§'<1+sin¢—l>'

We will now explain how we have developed the formulas above.We choose a coordinate system
with axis paralell to v; v,, the midpoint of v; v, is the origin. We scale such that |v;v,| = 1. Let p be the
point on the curve with opening angle ¢; see Figure 3.24. We have starting values ¢, [y and ry and set
A= K(])o (fo — r()).

In order to find p we have to fulfil two conditions. First, the difference /(p) — r(p) of the distances
from p to v; and v, has to equal %. The locus of all such point is a hyoerbola. Second the angle at p
with respect to v; and v, has to be ¢. The locus of all such points is a circle; see Figure 3.24. This holds
because of the Thales’ circle property.

B

vy

Figure 3.24: The left arc of the hyperbola is defined by v;, v, and (I(p) —r(p)) = ’% and the circle running through
vy and v, is defined by the opening angle ¢.

The hyperbola is defined by

X% y?
@ b
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2 2
where 2a = (I(p) —r(p)) = and b*+a* = ¢* = 1 holds. This gives a> = <2AT¢> and b = | — <2AT¢> .
The circle is defined by

X2+ —x)?=2. (3.10)

This means that we have to calculate x and z. From the law of sine we conclude

z 1 B 1
sinZ  2sin(t—¢)  2sing
Z—X =X 1

Sin(ﬁ—%—%) B COS% B ZSing

and therefore 7z = 2$m 3 and

11 1 —2cos?$ t
x:z——cot9 tq) 2 :—Coq)
2 2 2Sln¢ 2 2 451n%cos% 2

The intersection of the hyperbola and the circle is indeed given by the above functions X (¢) and Y (9).
We have found the solutions by a computer algebra system. Here we simply verify that the solutions are
correct. We insert the values into the hyberboly and the circle description.

X? Y?
5 — s =1 (3.11)
(A) (1)2_ i)
2K, 2 2K,
2
t 1
X2+ Y+ﬂ> - — (3.12)
2 4sin” ¢

For (3.11) we have

2
4 _cot§ ( 9)2_ 2 2
<2 1+sin¢\/ I+tanz) —A (%Cotﬁ( L 1))
3
A 1\2
(+%) (4)°-

0 2
S0 (1+tan5> |

t | ——F——1 =
«© 2 1 +4sind

The conclusion is valid since the following identity holds.

2
2tan% - (1 +tan%>

= (3.13)
1+tan2% 1+tan2%

1+sing=1+
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For showing (3.12) we proceed as follows:

2

(o 2 2
A cots 0 I o A
—- l+tan= | —A2 —cot = -
2 1+sin¢\/< * anz) +<2°° 2<1+sin¢

cot 3 1 t 2 )
2 1+ sin¢ +an B
A2

1)+

cotd

2

cotd

1 0 A2 ) cotd
<5C0t5<1+sin¢—l>> +C0t5< 1 +sin¢ 1> *
A cot% ?
2 1+sin0 (

(

1+tan—

2

cotd

1 0\? A2 o/ A2 cotd
—cota ] (-2 I (2 —1
<2C° 2) ( TFsing >+C° 2\ 1+sin6 *

2 2 4(1+sing) 1+sind

2
2
(cot%_cotq)) N A%cot?? <1+tan%)

1 Azcotz% , 0
——+ - tan —+1—2+
4sin¢  4(1 +sin0)

1

1 —tan
S —— tan
tan

9

(

+2

29

2

A cot2 ¢

4sin’ ¢ 4(1 +s1n¢)

Here we make use of the identity (3.13) and the equations

0 2 : 2
coty  cotd _ 1 sing  cos¢
2 2 4\ 1—cos¢d sing

and

1

4 sin?

¢

;

:

2
)

:

coto

¢
cot 2

)

4sin’¢

Finally, we have to prove that the above curve indeed fulfils the condition for any small piece w.
Experimentally, we make use of the precise curve description and import it into Geogebra or Maple.
Here we approximate the path between any two points by the corresponding segment. This procedure

already indicates that assumption has to be true.

It can also be shown analytically. A lengthy, detailed proof is given in [IKL99] or [Lan00].

Fig-

ure 3.25 shows examples for the curve for different values of ¢ and A. The figure stems from a Maple

plot.
We obtain the following result:

Corollary 3.17 For a funnel polygon with opening angle ¢ > 5 we will find any unknown target within

a competitive ratio Ky,.

Finally, for angles 0 < ¢p < 5 we can apply the same approach. Of course we can also apply the

condition

Ko, (b2 —1r2) = Ky, (€1 — 1)
for 1 < 92 < 3.
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i

-0.5+

Figure 3.25: Curves (X(0),Y(¢)) depending from ¢ and A.

Not that this will also result in a continuous extension of the curves of Figure 3.25. The problem is
that these curve parts will not fulfil the condition Equation 3.9 because Ky, < Ky, holds. Therefore we
just insert the fixed ratio y/2 which we would like to achieve at angle %. The factor /2 dominates all K.

By the same arguments as before it is sufficient to guarantee

w < min{ V2(¢; — £) , V2(ri — 1) }

for any small piece of our curve.

Again we would not prefer one side and set ¢ — ¢, = r; — rp. This means that we are moving on the
current angular bisector and call this startegy CAB (Current Angular Bisector); see also [IKL97, LOS96].
The analysis is also prenseted in [IKL99] oder [Lan00]. Note that if we apply the factor v/2 for the angles
above 7 for the path w we will also define a curve but the above path length property for w does not hold.

Figure 3.26: An example of the application of WCA.

Algorithm 3.1 summarizes the strategy, Figure 3.26 shows an example of its application. Altogether, the
following result holds:

Theorem 3.18 (Icking, Klein, Langetepe, Schuierer, Semrau, 1999)
Searching for the target t inside an unknown street polygon can be performed by an optimal \/2 compet-
itive strategy. [IKL99, §599, IKL"04]
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We have implemented the optimal strategy under the name “WCA” (Worst-Case-Aware), an applet
can be found here:

http://www.geometrylab.de/

Algorithm 3.1 Searching for the target of a street.

While target ¢ is not visible:
e Compute extreme reflex vertices vy and v,.
e FIf only on exist, move toward it.

e Otherwise repeat:

If a new reflex vertex vj or v, is detected: Replace v¢ or v, by v} or v/, respectively.

Let ¢ be the current opening angle w.r.t. v, and v;..

If ¢ < 7: Follow the current angular bisector

- If ¢ > %: Follow the curve represented by X (¢) and ¥ (¢) with the current value A.

e Until either v, or v, is fully explored. Move to the vertex on the opposite side.

Move to the target ¢.
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