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86 Chapter 3  Online searching for objects

3.4 Optimal search paths

We now consider the problem of searching for a goal in more general environments such as polygons
(with and without holes) graphs or trees. We consider the online and offline version. In the offline
version the environment is known, the goal remain unknown. In any case a search path has to visit or see
all possible goals of the given environment. Therefore any search path is also an exploration path for all
goals.

If the agent has a vision system, for any goal ¢ there will be a first point on the search path where
t gets visible. After reaching this point the agent can move to ¢ along the shortest path. The agent will
only use this last path, if 7 is the goal. In this sense the search path itself does not visit the goals, it only
sees any goal. On the contrary, if the agent has no vision, the search path has to visit any possible goal.

In the online version of the problem, additionally the agent has to gain more information about the
enviroment for future computation. We have already seen that a general constant competitive search
strategy does not exists for all groups of environments. For example, searching for the goal among
m fixed corridors with a cave at distance 1 at the end of each corridor, results in a search path of length
2m — 1 whereas the shortest path to the last seen point is 1. Since m can go to infinity, there is no constant
C for the ratio. On the other hand for the fixed configuration of m corridors (m is fixed) no other strategy
than visiting all caves successively has a better ratio. This means that there is a large ratio for the last
point visited against the shortest path, but any strategy has this large ratio. Therefore for comparisons
among good or bad search path we just compare a path to the worst-case ratio that any strategy has to
cope with.

The following definition is made for arbitrary environments E. For trees and graphs G = (V,E) we
consider two different variants w.r.t. the goal set. In the vertex search variant, the goals can only be
located at the vertices of G. The agent need not necessarily visit all edges. In the geometric search
variant, the goal can be located everywhere on the graph. Any search path has to visit all edges and
vertices.

For the general definition we introduce the goal set G C E For a graph G = (V, E) and vertex search
we have G =V, and G =V UE for the geometric search.

Figure 3.27: A search path 7 in a simple polygon. The point p’ on 7, is the first point on 7 such that p is seen
from .

Definition 3.19 Let E be an environment, G C £ a goal set and s a point inside E. A search path
7 with start point s is a path in E, such that 7 starts in s and detects any point of G at least once. The
performance of the search path (denoted as Search Ratio) is defined by*

P /
SR(m) := max 7‘% [+ 1Pl
peG |sp(s,p)|

47t5[ratZ denotes the part of the portion Mgy from a to b, sp(a,b) denotes the shortest path from a to b in ‘.
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where p’ denotes the first point along 7, such that p is detected from 7; compare Figure 3.27. An
optimaler search path 7, is a search path for £ and G with minimal search ratio over all search paths

in E.

For agent without visiom we have p’ = p for all points of G from . The performance is given by:

]
SR(®) = max ———.
reg |sp(s, p)l

For some environments, it is known that the computation of the optimal search path is an NP-hart
problem, i.e., for graphs [KPY96]. For some other environments it is even not clear how the optimal
search path can be computed. Computing an optimal search path is a difficult task, therefore we are
looking for good and easy to compute approximations. We would also like to approximate the optimal
search path in the online version, i.e., we are looking for a constant Cg, such that for any environment we
guarantee

SR(Ton1) < Cs - SR(Topt)-

6)) (i1)

Figure 3.28: (1) m ray, (ii) m segments of different length.

At first place the optimal search path is computed for the offline version and can be handled as a com-
parison measure for the online version. If the offline optimal search path is not known, any online
approximation is also an offline approximation. Let us consider some examples:

1.

If we are searching for a goal on m rays, that emanate from a common start point s, the online
and the offline version coincidence. We do not have more information in the offline version.. The
search strategy that visits ray (i mod m) with depth (m%)l in the i-the step has the best competitve
ratio among all possible strategies. Therefore trivially this is also the optimal search path. This
means we have an approximation of the search ratio by factor Cg = 1.

If we slightly relax the above example and replace the m rays by segments of different length
r1,r2,...,rm as show in Figure 3.28, the problem of computing the optimal search path is still
unknown for the offline case. We have to compute the optimal competitive strategy in the offline
version. Approximations are possible by applying and adjusting the optimal competitive strategy
of the ray version (all r; = o).

In case of a tree environment the optimal search path for the vertex search can be computed in
exponential time, when the tree is given. We consider any permutation of the vertex set and
calculate the search ratio of the corresponding path. So we will find the best search path.

. For the geometric search in trees we cannot apply the above (example 3) strategy since the goal

might be located along an edge. Example 2 is a special case of the geometric search version on
general trees, therefore the optimal offline search path is still unknown also for general trees in this
case.
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Algorithm 3.2 Searchpath by doubling exploration depth

e Let Expl,,(d) be a competitive (online) strategy, for the exploration of an environment up to depth
d that returns to the start.

e Successivly explore environment ‘E by increasing depth, applying Expl,;(2°) fori = 1,2,... from
start point s.

Some of the above example cry for an approximation of the search ratio. The same holds for the
online version. The general idea for an approximation is as follows. For the given environment we
successively apply constant competitive (online or offline) exploration strategies with increasing depth
d = 2! in analogy to the doubling heuristic used by searching for the door along a wall (doubling heuristic;
see Algorithm 3.2). Let Expl,,; denote a competitive online strategy, that explores the environment and
returns to the start. Let Expl ,,(d) denote such a strategy, that does an exploration restricted to all
points in the (possibly larger) environment that are no more than distance d away from the start. Expl
and Explopt(d) denote the corresponding offline strategies for these problems. Furthermore, Tty | €te.
denote the corresponding paths.

Lemma 3.20 Let ‘E be an environment, such that an agent without vision system is searching for a goal.
Let Expl,,,/(d) be a C-competitive strategy that explores E up to distance d. By the use of the doubling
heuristic (Algorithm 3.2) we achieve a 4C-approximation of the optimal search ratio.

Proof. Expl,,(d) is competitive, which means that there is a constant C such that for all enviroments £
we have

| TcExpl

onl

(@) < C - [Texpl, ()] - (3.14)

Also the optimal search path 7, finally visits all points with distance d. Let last(d) be the last point

. . .. . C e [Top @
at distance d from s that is detected (and visited) by Top. The performance of this point is %.

This is a lower bound of the search ratio, the general performance of T, cannot be better than the
performance ratio in last(d). Therefore we give the following lower bound:

T last(d)
SR(Topt) > % (3.15)
last(d)

The optimal search path 7, applied from s to last(d) explores all goals at depth d and T, is
an exploration path for depth d. If we return from last(d) to the start s by the shortest path of length d,
we obtain an exploration tour that returns to the start. This overall path is not shorter that the optimal
depth d restricted exploration tour (with return to s), we conclude

(@)] < Imop ™|+l (3.16)

| TcExpl s

opt

From Equation 3.15 and Equation 3.16 we have

[Texpl, ()] < d- (SR(Top) +1). (3.17)

opt

The strategy applies Expl,,;(d) with increasing exploration depth d = 2°, 2!, 22 ... The worst case
for a ratio is attained, if we muss a goal with distance 2/ + € in the round for exploration depth d = 2/
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and detect and visit this point almost at the end of the round with exploration depth d = 2/*!. This gives
a worst case search ratio for each round by

j+1
'Zl ’TcExplonl(Z")‘
SR(® <
m =< 2/ +¢
c it
< - T i
(3.14) i ,:21 | Explopt(2)|
c it
< =) 2" (SR(mopt) + 1
317) 21 1:21 (SR(Mopt) +1)
2721
< 0 (F5) Rl 1) <4 (SR (g 1)
0
For trees we have an optimal exploration strategy for any d with a ratio of C = 1 by DFS:
Corollary 3.21 (Koutsoupias, Papadimitriou, Yannakakis, 1996)
For any tree we can approximate the optimal search ratio by a factor of 4.
[KPY96]

An interesting result, because the optimal search path and the optimal search ratio is unknow.

For other environments, the main problem is finding competitive strategies for the depth restricted
exploration. For general graphs G = (V, E) we have introduced CFS-Algorithm in Section 1.5 on page 31.
This algorithm can be used for depth resticted exploration for depth r := d. There is a problem with this
strategy, since we use a rope of length (1+a)d and guarantee a competitive factor of 4+ %, we guarantee
the exploration only for depth d.

Since we explore the graph with rope length (1+ ot)d it might happen that also parts of the graph
with distance larger than d will be explored. In the offline optimal exploration path such parts will never
be visited. The workaround for this problems is as follows. We compare the restricted depth strategy
with for depth d (that partially visits depth Bd) to the optimal offline exploration with depth Bd. In this
case we are on the safe side. In the case of CFS we have B = 1 + a. Also the comparison ratio might
depend on B. We make use of a ratio Cy such that Expl,, (d) < Cp - Expl,, (Bd) holds. For the CFS we

have CB :4+§.

Theorem 3.22 (Fleischer, Kamphans, Klein, Langetepe, Trippen, 2003)

Let ‘E be an environment where an agent without vision system is searching for a target. Let Expl(d)
be strategy for the depth restricted online exploration of E with Explyy (d) < Cp - Explyy, (Bd). We can
search in ‘E by the doubling heuristic (Algorithm 3.2) and attain a eine 4BCg-approximation of the
optimal search path and search ratio. [FKK"04]

Proof. In pure analogy to the proof of Lemma 3.20, only changing the version of Equation 3.14. O

Corollary 3.23 For general graphs and online geometric search we can approximate the optimal search
ratio by a factor of 4(1+a)(4+ £).

In the above version without vision we always guaranteed that the last point, last(d), detected at
distance d is also exactly visited at this moment in time. For an agent with a vision system it might
happen that the search paths visits a point last(d) from which the last point at distance d is detected and
seen but last(d) has not distance d to the start.

We can no longer conclude |sp(s,last(d))| < d, which was required for the bound Equation 3.15.
Fortunately, for the agent with vision system we can at least guarantee that |sp(s,last(d))| < \nopt}f“(d)]
holds. For moving back to the start from last(d) we can use the same path back.
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This gives a different lower bound for the optimal search ratio against the optimal offline exploration
tour, which is:

|TC ]ast(d)| |7T’Expl0 (d)|
SR (Topt) > Optzl > d"‘ == Mgl (o) < 2d - SR(Tgpt).

Altogether we attain a ratio und wir erreichen einen Faktor von
J+1 Jj+1 o
l
i; [ TExpl, (21| El [ TExpl (827 i; B2 SR(Topt)
- @ @@ [ — R
Cp 57 <2C 7

< 8BCp-SR(Top) -

IN

2]

Theorem 3.24 Let ‘E be an environment where an agent with vision system is searching for a target. Let
Expl,, (d) be strategy for the depth restricted online exploration of E with Explyy (d) < Cp - Explyy, (Bd).
We can search in ‘E by the doubling heuristik (Algorithm 3.2) and attain a eine 8Cg-approximation of
the optimal search path and search ratio. [FKK"04]

With this general framework we can approximate optimal search path for polygons also in an online
fashion. The main task is the design of exploration strategies which will be the subject of the next section.

For the negative side we will now show some examples where an agent (without a vision system)
cannot approximate the offline optimal search path with a constant factor in the online version. Lower
bounds are achieved by counter examples. For some graph configuration we show that the search ratio is
constant (the competitive ratio is small) whereas any online strategy can be forced to make arbitrary large
detours against the shortest path to some goals. In comparison Corollary 3.23 for the geometric search
has used the property that the CFS Algorithm has running time of (4 + 8/a)|E(d)| for depth restriced
exploration. If the goal set is restricted to the vertices, the result will not help us anymore.

M

s (i)

Figure 3.29: The optimal search path for goal set V cannot be approximated by a constant factor for (i) planar
graphs with multiple edges and (ii) general graphs without multiple edges.
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Theorem 3.25 For the following graph configuration we can show that otimal offline search path cannot
be approximated by an online search startegy with a constant factor.

1. Planar graphs G = (V,E) with multiple edges and goal set V.
2. General graphs G = (V,E) even without multiple edges and goal set V.

3. Directed graphs G = (V,E) with goal set EUV.

Exercise 21 Show that for directed graphs G = (V,E) with goal set E UV a constant approximation of
the optimal search path and search ratio is not possible.

Exercise 22 Consider planar graphs G = (V,E) with goal set V. Does a constant approximation of the
optimal search path and search ratio exist?

Proof.

1. In Figure 3.29(i) the optimal search path visits vertices v and ¢ with search ratio 1. Any online
strategy will be forced to visit all multiple edges before ¢ is visited. This gives a ratio of % for
arbitrary k.

2. In Figure 3.29(ii) the optimal search path visit the satellites of the k-clique from s in 3k steps. The
distance from s to the clique is also k. This gives a search ratio of at most 4. An online strategy
will be forced to visit all inner edges first, before the satellites will be visited. Therfore Q(k?) steps
will be required and the search ratio is Q(k).

d
The next paragraph will handle exploration strategies by an agent with a vision system. An analogous
negative result (no constant competitive search path approximation) will be achieved for polygons with
obstacles (or holes).
Interestingly, for all negative examples, there is already no constan competitive online exlploration
strategy for the corresponding goal set. This is extended to the negative result for the search path approx-
imation. Altogether, the conjecture is that both statements are equivalent in general

Alreay proved: I constant-competitive, (depth restricted) exploration strategy = 3 online search strat-
egy with constant search ratio approximation.

Conjecture: /H constant-competitive exploration strategy and 3 ’extentable’ lower bound = /EI online
search strategy competitive against search ratio.

An extension trick for the lower bound can be seen in Figure 3.29(ii), the path to the k-clique was
extended such that the search ratio of the optimal search path is constant. A similar idea is applied for
polygons with holes; see Figure ??.
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