
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN
INSTITUT FÜR INFORMATIK I

Elmar Langetepe

Online Motion Planning

MA INF 1314

Summersemester 2016

Manuscript: Elmar Langetepe

8 Chapter 1 Labyrinths, grids and graphs

1.4 Exploration of grid environments

Next we consider a simple discrete grid model. The agent runs inside a grid-environment. In contrast to

Shannons the inner obstacles consist of full cells instead of single blocked edges.

We would like to design efficient strategies for such grid environments. First, we give a formal

definition.

Definition 1.6

• A cell c is a tupel (x,y) ∈ IIN2.

• Two cells c1 = (x1,y1),c2 = (x2,y2) are adjacent, if :⇔ |x1 − x2|+ |y1 − y2|= 1. For a single cell

c, exact 4 cells are adjacent.

• Two cells c1 = (x1,y1),c2 = (x2,y2), c1 ̸= c2 are diagonally adjacent, if :⇔ |x1 − x2| ≤ 1∧ |y1 −
y2|≤ 1. For a single cell c, exact 8 cells are diagonally adjacent.

• A path π(s, t) from cell s to cell t is a sequence of cells s = c1, . . . ,cn = t such that ci and ci+1 are

adjacent for i = 1, . . . ,n−1.

• A gridpolygon P is a set of path-connected cells, i.e., ∀ci,c j ∈ P : ∃ path π(ci,c j), such that

π(ci,c j) ∈ P verl”auft.

The agent is equipped with a touch sensor so that the agent scans the adjacent cells and their nature

(free cell or boundary cell) from its current position. Additionally, the agent has the capability of building

a map. The task is to visit all cells of the gridpolygon and return to the start. This problem is NP-hart for

known environments; see [IPS82]. We are looking for an efficient Online-Strategy. The agent can move

within one step to an adjacent cell. For simplicity we count the number of movements.

The task is related to vacuum-cleaning or lawn-mowing. A cell represents the size of the tool, the

tool should visit all cells of the environment. A general polygonal environment P can be approximated

by a grid-polygon.

ss

Figure 1.6: A polygon P and the gridpolygon P! as a reasonable approximation.

The starting position and orientation of the tool fixes the grid and all connected cells which are

entirely inside P belong to the approximation P!; see Figure 1.6. For any gridpolygon P′ we use the

following notation. Cells that do not belong to P′ but are diagonally adjacent to a cell in P′ are called

boundary cells. The common edges of the boundary cells and cells of P′ are the boundary edges. Let

E(P′) denote the number of boundary cells or E for short, if the context is clear. The number of cells is

denoted by C(P′) or C respectively.

From Theorem 1.3 we can already conlcude a lower bound of 2 for the competitive ratio of this

problem. On the other hand DFS on the cells finishes the task in 2C−2 steps

1.4 Exploration of grid environments 9

DFS

s s s

Verbesserung Optimal

Figure 1.7: Ist DFS optimal?

Exercise 4 Give a formal proof that for a gridpolygon P the DFS strategy on the cells requires exactly

2C−2 steps for the exploration (with return to the start) of P.

But is DFS really the best strategy in general? For fleshy environments DFS obviously is not very

efficient. Besides the lower bound construction makes use of corridors only. Compare Figure 1.7: After

DFS has visited the right neighbour of s the environment is fully known and we can improve the strategy.

It seems that even the optimal solution could be found in an online fashion in this example. On the

other hand there are always skinny corridor-like environments where DFS is the best online strategy.

Altogether, we require a case sensitive measure for the performance of an online strategy that relies on

the existence of large areas. The existence of large fleshy areas depends on the relationship between the

number of cells C and the number of (boundary) edges E . In Figure 1.7 the environment has 18 edges

and 18 cells. In corridor-like environments we have 1
2E ≈C in fleshy environments we have 1

2E <<C;

see also Figure 1.8.

C = 43

E = 86 = 2C E = 34 << 2C

Figure 1.8: The number of boundary edges E in comparison to the number of cells C is a measure for the existence
of fleshy or skinny parts.

1.4.1 Exploration of simple gridpolygons

We first consider simple gridpolygons P which do not have any inner boundary cell, i.e., also the set of

all cells that do not belong to P are path connected.

Note that the lower bound of 2 is not given, because the lower bound construction in the previous

section requires the existence of inner obstacles. We make use of a different construction.

Theorem 1.7 Any online strategy for the exploration (with return to the start) of a simple gridpolygon

P of C cells, requires at least 7
6 C steps for fulfilling the task.

Proof. We let the agent start in a corner as depicted in Figure 1.9(i) and successively extend the walls.

Assume that the agent decides to move to the east first. By symmetry we apply the same arguments, if

the agent moves to the south. For the second step the agent has two possibilities (moving backwards can

be ignored). Either the strategy leaves the wall by a step to the south (seeFigure 1.9(ii)) or the strategy

follows the wall to the east (see Figure 1.9(iii)).

In the first case we close the polygon as shown in Figure 1.9(iv). For this small example the agent

requires 8 steps whereas the optimal solution requires only 6 steps which gives a ratio of 8
6 ≈ 1.3.

10 Chapter 1 Labyrinths, grids and graphs

s

ssss

(ii) (iii)

(vii)(vi)(v)(iv)

(i)

s

s

Figure 1.9: A lower bound construction for the exploration of simple gridpolygons.

In the second case we proceed as follows: If the robot leaves the wall (the wall runs upwards), we

close the polygon as depicted in Figure 1.9(v) or (vi), respectively. In this small example the agent

requires 12, respectively, whereas 10 steps are sufficient.

In the last and most interesting case the agent follows the wall upwards and we present the sophisti-

cated polygon of Figure 1.9(vii). In the offline case an agent requires 24 steps. The online agent already

made a mistake and can only finish the task within 24 steps. This can be shown by a tedious case dis-

tinction of all further movements. We made use of an implementation that simply checks all possibilities

for the next 24 steps. There was no such path that finishes the task. For all cases we guarantee have a

worst-case ratio of 28
24 = 7

6 ≈ 1.16.

We use this scheme in order to present a lower bound construction of arbitrary size. Any block has

an entrance and exit cell which are marked by corresponding arrows; see Figure 1.9(iv)–(vii). If an agent

moves inside the next block, the game starts again. Since the arrows only point in east or west direction

we take care that the concatenated construction results in a simple gridpolygon of arbitrary size. as

required. !

Note that the arbitrary-size condition in the above proof is necessary. Assume that we can only

construct such examples of fixed size D. This will not result in a lower bound on the competitive ratio.

Any reasonable algorithm will explore the fixed envirnment with komeptitive ratio 1 since α ≫ D exists,

with |SALG|≤ |SOPT|+α.

We consider the exploration of a simple gridpolygon by DFS and formalize the strategy; see Algo-

rithmus 1.2. The agent explores the polygon by the “Left-Hand-Rule”, i.e. the DFS preference is Left

before Straight-On before Right. The current direction (North, West, East or South) is stored in the

variable dir. The functions cw(dir), ccw(dir) und reverse(dir) result in the corresponding directions of

a rotation by 90◦ in clockwise or counter-clockwise order or by a rotation of 180◦, respectively. The

predicate unexplored(dir) is true, if the adjacent cell in direction dir is a cell of the environment, which

was not visited yet.

1.4 Exploration of grid environments 11

Algorithm 1.2 DFS

DFS:

Choose dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

ExploreCell(dir):

// Left-Hand-Rule:

ExploreStep(ccw(dir));

ExploreStep(dir);

ExploreStep(cw(dir));

ExploreStep(dir):

if unexplored(dir) then

move(dir);

ExploreCell(dir);

move(reverse(dir));

end if

verbesserter DFS

sc2

c1

DFS

Figure 1.10: First simple improvement of DFS.

A first simple improvement for DFS is as follows:

If there are no unexplored adjacent cells around the current cell, move back along the shortest

path (use all already explored cells) to the last cell, that still has an unexplored neighbouring

cell.

Figure 1.10 sketches this idea: After visiting c1 the pure DFS will backtrack along the full corridor

of width 2 and reach cell c2 where still something has to be explored. With our improvement we move

directly from c1 to c2. Note that for the shortest path we can only make use of the already visited cells.

We have no further information about the environment.

By this argument we no longer use the step “move(reverse(dir))” in the procedure ExploreStep. After

the execution of ExploreCell we can no longer conclude that the agent is on the same cell as before.

Therefore we store the current position of the agent and use it as a parameter for any call of ExploreStep.

The function unexplored(base, dir) gives “True”, if w.r.t. cell base there is an unexplored adjacent cell

in direction dir. We re-formalize the behaviour as follows:

12 Chapter 1 Labyrinths, grids and graphs

Algorithm 1.3 DFS with optimal return trips

DFS:

Choose dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

Move along the shortest path to the start;

ExploreCell(dir):

base := current position;

// Left-Hand-Rule:

ExploreStep(base, ccw(dir));

ExploreStep(base, dir);

ExploreStep(base, cw(dir));

ExploreStep(base, dir):

if unexplored(base, dir) then

Move along the shortest path

among all visited cells to base;

move(dir);

ExploreCell(dir);

end if

c1

c2 s

Figure 1.11: Second improvement of DFS.

1.4 Exploration of grid environments 13

Algorithm 1.4 SmartDFS

SmartDFS:

Choose direction dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

Move along the shortest path to the start;

ExploreCell(dir):

Mark the cell with its layernumber;

base := current Position;

if not SplitCell(base) then

// Left-Hand-Rule:

ExploreStep(base, ccw(dir));

ExploreStep(base, dir);

ExploreStep(base, cw(dir));

else

// Choose different order:

Calculate the type of the components by the layernumbers

of the surrounding cells;

if No component of typ (III) exists then

Move one step by the Right-Hand-Rule;

else

Visit the component of type (III) last.

end if

end if

ExploreStep(base, dir):

if unexplored(base, dir) then

Move along the shortest path along

the visited cells to base;

move(dir);

ExploreCell(dir);

end if

14 Chapter 1 Labyrinths, grids and graphs

For a second kind of improvement we consider the gridpolygon Figure 1.11. In this example the

current DFS variant fully surrounds the polygon. Finally the agent has to move back from c2 to c1 so

that the corridor of width 2 is visited almost 4 times. Obviously it would be better to first fully explore

the component at c1 move to the other component at c2 and finally move back to the start. In this case

the critical corridor will be visited only once. So, if the exploration splits the polygon into components

that have to be considered, we have to take care which component should be visited first.

A cell (like the cell c1) where the remaining polygon definitely splits into different parts is called a

split-cell. At the first visit of split-cell c1 in Figure 1.11 it seems to be better to not apply the Left-Hand

preference. This depends on the location of the starting point, because we have to move back at the end.

The idea can be formulated as follows.

If the unexplored part of the polygon definitely is splitted into different components (i.e., the

graph of unexplored cells is splitted into different components), try to visit the unexplored

part that does not contain the starting point.

This idea leads to the Algorithmus 1.4 (SmartDFS). It remains to decide, which component actually

contains the starting point. For this we introduce some notions. Until the first split happens we apply

the Left-Hand-Rule and successively explore the polygon layer by layer from the outer boundary to the

inner parts. We require a formal definition of the layers.

2l Kanten weniger

l

l

π

2l Kanten dazu

Figure 1.12: The ℓ-Offset of gridpolygon P.

Definition 1.8 Let P be a (simple) gridpolygon. The cells of P that share a boundary edge belong to

the first layer, the 1-Layer of P. The gridpolygon that stems from P without the 1-Layer is called the

1-Offset of P. Recursively, the 2-Layer of P, is the 1-Layer of the 1-Offset of P and the 2-Offset of P

is the 1-Offset of the 1-Offset of P and so on.

Note that the ℓ-Offset of a gridpolygon need not be connected and finally the Offsets will decrease

to an empty polygon. The definition is totally independent from any strategy. Fortunately, during the

execution of SmartDFS on a simple gridpolygon, we can successively mark and store the layers for any

visited cell. The ℓ-Offset has an interesting property.

Lemma 1.9 The non-empty ℓ-Offset of a simple gridpolygon P has at least 8ℓ edges less than P.

1.4 Exploration of grid environments 15

Proof. We surround the boundary of the gridpolygon in clockwise order and visit all boundary edges

along this path. Let us assume that the offset remains a single component. For a left turn the ℓ-Offset 2ℓ
looses 2ℓ edges for a right turn the ℓ-Offset 2ℓ wins 2ℓ edges We can show that there are 4 more right

turns than left turns. So the ℓ-Offset has at least 8ℓ edges less than P. Even more edges will be cancelled,

if the polygon fell into pieces. !

Exercise 5 Show that for any surrounding of the boundary of a simple gridpolygon in clockwise order

there are 4 more rigth turns than left turns. Make use of induction.

Exercise 6 Show that in the above proof the non-empty ℓ-Offset will loose even more edges, if it consists

of more than one connected component. Show the statement for the 1-Offset.

(i) (ii)

c

P2Q

s

K1

c

P

Q

K2 K2

s

K1

P1 Q

c

s′

Figure 1.13: Decomposition at a split-cell.

Layer 2

Layer 1

(ii)(i)

c

(II)

(III) (III)

(I)

c

Figure 1.14: Three types of components.

We consider Figure 1.13(i): In the 4. Layer for the first time a split-cell c occurs. Now we decompose

the polygon into different components2:

2Let A
•

∪B denote the disjoint union A
•

∪B = A∪B mit A∩B = /0.

16 Chapter 1 Labyrinths, grids and graphs

P = K1

•

∪K2

•

∪ {visisted cells of P},

where K1 denotes the component that was visited last. SmartDFS recursively works on K2, returns to c

and proceeds with K1.

By the layernumbers we would like to avoid the situation of Figure 1.11. We will find the split-cell in

layer ℓ, which gives three types of components; see Figure 1.14:

(I) Component Ki is fully surrounded by layer ℓ.
(II) Component Ki is not surrounded by layer ℓ (may be touched by the split-cell only).

(III) Component Ki is partly surrounded by layer ℓ (not only touched by the split cell).

Obviously, if a split-cell occurs, we should visit the component of type (III) last because the starting

point lies in the outer layers of this component.

(i) (ii)

2

2

2

2

2

1

2 2

2

s

c

1

c

1

11 11

111 1

1 1

1

1

1

2

2

2

2

1

121 1 2

2

1

s

1

1

1 2

2

Figure 1.15: Special cases: No component of typ (III) exists.

There are some situations where the a component of type (III) does not exist. For example if the split-

cell is the first cell on the next layer, or the component of the starting point was just explored (efficiently).

More precisely:

(a) The component with the starting point on its layer was just fully explored in the current layer; see

Figure 1.15(i). In this case the order of visiting the remaining components is not critical, we can

choose an arbitrary order. This example also shows that at a split-cell more than two components

has to be visited. We simply apply one the next step by changing to the Right-Hand-Rule.

(b) Two components have been fully surrounded, because at the split-cell we change from layer ℓ to

ℓ+ 1; see Figure 1.15(ii). In all other cases at least one additional visited cell is marked with

layer number of the split-cell. We can conclude that layer ℓ was closed with the split-cell. This

means that the starting point is not part of the layer of the component where the agent currently

comes from. Because the agent normally moves by the Left-Hand-Rule, it suffices to apply the

Right-Hand-Rule in this case also.

Altogether in both cases we simply apply the Right-Hand-Rule for a single step.

For the overall analysis at a split-cell we consider two polygons P1 und P2 as depicted in Fig-

ure 1.13(i). Here we detect the component of type (III). K2 is a component of type (II). Let Q be a

1.4 Exploration of grid environments 17

rectangle of edge length (width or height) 2q+1 around the split cell c so that

q :=

{

ℓ, if K2 has type (I)

ℓ−1, if K2 has type (II)
.

Now choose P2 so that K2 ∪ {c} is the q-Offset of K2 ∪ {c}. The idea is that the rectangle Q will

be added so that P2 has the desired form. Now let P1 := ((P\P2)∪Q)∩P, comp. Figure 1.13. The

intersection with P is necessary, since there are cases where Q does not totally fit into P. We would like

to apply arguments recursively for P2 and P1. Let us consider them separately as shown in Figure 1.13(ii).

We have choosen P1,P2 und Q in a way so that the paths in P1\Q und P2\Q did not change w.r.t. the

paths already performed for P3. The already performed paths that lead in P from P1 to P2 and from P2 to

P1 will be used and adapted so that the paths outside Q will not change; see Figure 1.13. We can consider

P1 and P2 separately.

We know that any cell has to be visited at least once. Therefore we count the number of steps S(P) for

polygons P as follows. It is the sum of the cells, C(P), of P plus the extra cost excess(P) for the overall

path length.

S(P) :=C(P)+ excess(P).

The following Lemma gives an estimate for the extra cost w.r.t. the above decomposition around a

split-cell.

Lemma 1.10 Let P be a gridpolygon, c a split-cell, so that two remaining components K1 und K2 has

to be considered. Assume that K2 is visited first. We conclude:

excess(P)≤ excess(P1)+ excess(K2 ∪{c})+1.

Proof. The agent is located at cell c and decides to explore K2 ∪ {c} starting from c and return to c.

This gives additional cost at most excess(K2∪{c}), note that the part P2\(K2∪{c}) can only help for the

return path. Because c was already visited, we count one additional item for the excess of visited cells.

After that we proceed with the exploration of P1 and require excess(P1) for this part. !

For the full analysis of SmartDFS we have to prove some structural properties:

Lemma 1.11 The shortest path between to cells s and t in a simple gridpolygon P with E(P) boundary

edges consists of at most 1
2E(P)−2 cells.

Proof. W.l.o.g. we assume that s and t are in the first layer, otherwise we can choose different s or t

whose shortest path is even a bit longer. Consider the path, πL, in clockwise order in the first layer from

s to t and the path, πR, in counter-clockwise order in the first layer from s to t. Connecting πL and πR

gives a full roundtrip. As in the proof of Lemma 1.9 counting the edges gives 4 more edges than cells

which gives

|πR|+ |πL|≤ E(P)−4

visited cells.

In the worst case both path have the same length, which gives |π(s, t)| = |πR| = |πL|, and 2|π(s, t)| ≤
E(P)−4 ⇒ |π(s, t)| ≤ 1

2E(P)−2. !

Lemma 1.12 Let P be a gridpolygon and let c be a split-cell. Define P1,P2 und Q as above. For the

number of edges we have:

E(P1)+E(P2) = E(P)+E(Q).

3For the uniqueness of this decomposition into P1 and P2 we remark that P1 and P2 are connected, respectively and P∪Q =
P1∪P2 and P1 ∩P2 ⊆ Q holds.

18 Chapter 1 Labyrinths, grids and graphs

Proof. For arbitrary gridpolygons P1 and P2 we conclude

E(P1)+E(P2) = E(P1 ∪P2)+E(P1∩P2).

Let Q′ := P1 ∩P2, we have:

E(P1)+E(P2) = E(P1 ∩P2)+E(P1∪P2)

= E(Q′)+E(P∪Q)

= E(Q′)+E(P)+E(Q)−E(P∩Q)

= E(P)+E(Q), since Q′ = P∩Q

!

Exercise 7 Show that for arbitrary two gridpolygons P1 and P2 we have E(P1)+E(P2) = E(P1 ∪P2)+
E(P1∩P2).

Using all these arguments we can show:

Theorem 1.13 (Icking, Kamphans, Klein, Langetepe, 2000)

For a simple gridpolygon P with C cells and E boundary edges the strategy SmartDFS required no more

than

C+
1

2
E −3

for the exploration of P (with return to the start). This bound will be attained exactly in some environments.

[IKKL00b]

Proof. By the above arguments it suffices to show excess(P)≤ 1
2 E −3. We give a proof by induction on

the number of components.

Induction base:

Assume that there is no split-cell. For the exploration of a single component, SmartDFS visits all

cells exactly once and return to the start. For visiting all cells we require C − 1 steps. Now the

excess is the shortest path back. By Lemma 1.11 1
2E −2 steps suffices which gives the conclusion

Induction step:

Consider the (first) decomposition at a split-cell c. Let K1,K2,P1,P2,Q be defined as above, assume

that K2 is visited last. We have:

excess(P) ≤ excess(P1)+ excess(K2 ∪{c})+1 (Lemma 1.10)

≤(I.A.)

1

2
E(P1)−3+

1

2
E(K2 ∪{c})
︸ ︷︷ ︸

≤E(P2)−8q (Lemma 1.9)

−3+1

≤
1

2

[

E(P1)+E(P2)
︸ ︷︷ ︸

≤ E(P)+4(2q+1) (1.12, Def. of Q)

]

−4q−5

≤
1

2
E(P)−3

!

A Java-Applet for the Simulation of SmartDFS and different strategies can be found at:

http://www.geometrylab.de/

1.4 Exploration of grid environments 19

Finally, we would like to show, how to compute the offline shortest paths in gridpolygons Of course

the Dijkstra algorithm can also be applied on the gridgraph, but this algorithm does not use the grid

structure directly. As an alternative we apply Algorithmus 1.5 (C. Y. Lee, 1961, [Lee61]), the running

time is only linear in the number of overall cells. The algorithm simulates a wave propagation starting

from the goal. Any cell will be marked with a label indicating the distance to the goal. Obstacles slow

down the propagation a bit; see Figure 1.16. When the wave reaches the starting point s, we are done

with the first phase. For computing the path we start at s and move along cells with strictly decreasing

labels. Obviously, the shortest path need not be unique.

Algorithm 1.5 Algorithm of Lee

Shortest path from s to t in a gridpolygon

Datastructur: Queue Q

// Initialise

Q.InsertItem(t);
Mark t with label 0;

// Wave propagation:

loop

c := Q.RemoveItem();
for all Cell x such that x is adjacent to c and x is not marked do

Mark x with the label of (c)+1;

Q.InsertItem(x);
if x = s then break loop;

end for

end loop

// Backtrace:

Move along cells with strongly decreasing labels from s to t.

3 4 5 6

7

7

67 7
56 67 7
45 56 67 7
34 45 56 67 7

3 34 45 56 67 7
3 45 5 76347 6

3 45 56 67 7
67 7

3 4 5 66 77
3 44 55 66 77
4 55 66 77
5 66 77
6 77

t
s

t
s

t
s 1

2

1
1

2

2
1 1

2
2 1 22 1

1 2 1 2
22

2

s
t

Figure 1.16: Wave-Propagation.

20 Chapter 1 Labyrinths, grids and graphs

BIBLIOGRAPHY

Bibliography

[IKKL00a] Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar Langetepe. Exploring an un-

known cellular environment. In Abstracts 16th European Workshop Comput. Geom., pages

140–143. Ben-Gurion University of the Negev, 2000.

[IKKL00b] Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar Langetepe. Exploring an un-

known cellular environment. Unpublished Manuscript, FernUniversität Hagen, 2000.

[IPS82] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs. SIAM J.

Comput., 11:676–686, 1982.

[Lee61] C. Y. Lee. An algorithm for path connections and its application. IRE Trans. on Electronic

Computers, EC-10:346–365, 1961.

[Sha52] Claude E. Shannon. Presentation of a maze solving machine. In H. von Foerster, M. Mead,

and H. L. Teuber, editors, Cybernetics: Circular, Causal and Feedback Mechanisms in Bi-

ological and Social Systems, Transactions Eighth Conference, 1951, pages 169–181, New

York, 1952. Josiah Macy Jr. Foundation. Reprint in [Sha93].

[Sha93] Claude E. Shannon. Presentation of a maze solving machine. In Neil J. A. Sloane and

Aaron D. Wyner, editors, Claude Shannon: Collected Papers, volume PC-03319. IEEE

Press, 1993.

[Sut69] Ivan E. Sutherland. A method for solving arbitrary wall mazes by computer. IEEE Trans.

on Computers, 18(12):1092–1097, 1969.

22 BIBLIOGRAPHY

INDEX

Index

•

∪ .see disjoint union

1-Layer . 14

1-Offset . 14

2-Layer . 14

2-Offset . 14

lower bound . 5

A

adjacent . 8

B

Backtrace . 19

C

cell . 8

D

DFS . 8, 11

diagonally adjacent . 8

Dijkstra .19

disjoint union . 15

G

grid-environment . 8

gridpolygon . 8

I

Icking . 5, 18

Itai . 8

J

Java-Applet . 18

K

Kamphans . 5, 18

Klein .5, 18

L

Langetepe . 5, 18

Layer .15

Lee . 19

Left-Hand-Rule . 10–13

Lower Bound . 9

lower bound . 8

N

NP-hart . 8

O

Offline–Strategy . 5

Online–Strategy . 5

Online-Strategy .8

P

Papadimitriou . 8

path . 8

Q

Queue . 19

S

Shannon . 3

Sleator . 5

SmartDFS . 13, 14

split-cell . 14

Sutherland . 3

Szwarcfiter . 8

T

Tarjan . 5

touch sensor . 8

W

Wave propagation . 19

24 INDEX

