
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN
INSTITUT FÜR INFORMATIK I

Elmar Langetepe

Online Motion Planning

MA INF 1314

Summersemester 2016

Manuscript: Elmar Langetepe

1.5 Constrained graph-exploration 31

1.5 Constrained graph-exploration

We consider the problem of the exploration of an unknown graph G = (V,E) starting from some fixed

vertex s ∈ V . This means that we would like to visit all edges and vertices of G. First, we consider

unit-weights which means that any visit of an edge has cost 1. Different from the previous section we

consider a constrained version of the exploration, due to the following practical models. Let r denote the

radius or depth of the graph w.r.t. s. I.e., r is the maximal length of a shortest path from s to some vertex

v ∈V . Let us first assume that r is known, but not the graph itself.

1. The agent is bounded by a tether of length ℓ= (1+α)r (for example a cable constraint).

2. The agent has to return to the start after any 2(1+α)r steps (for example an accumulator has to be

recharged).

3. A large graph should be explored up to a given fixed depth d (for example for searching a close by

target).

The above third variant will be applied to a searching heuristic with increasing depth, later. First,

we show some simple simulation resutls. If an algorithm for the tether variant is known, one can also

establish an accumulator strategy with some extra cost.

Lemma 1.21 Given a tether variant strategy with tether length l = (1+α)r and overall cost T . For any

β > α there is an accumulator-strategy with cost
1+β
β−α T

Proof. We design the accumulator strategy by following the tether strategy. After any 2(β−α)r steps

we move back from the current vertex v to the start, recharge the agent and move back to v. Then we

proceed with the next step of length 2(β−α)r of the tether strategy path. In the tether strategy for any

vertex v, we are never more than (1+α)r away from the start. That is 2(β−α)r+2(1+α)r = 2(1+β)r
always result in correct loops. The strategy is correct.

On the other hand, we have cost T for following the tether path and additional cost for moving back

and force. We move back at most T
2(β−α)r times and require 2(1+α)r steps for any movement. This

gives total cost:

T +
T

2(β−α)r
·2(1+α)r = T

β−α+1+α

β−α
=

1+β

β−α
T .

!

Exercise 9 Given an accumulator strategy S with accumulator size 2(1+β)r and overall cost T . For a

given α > β design an efficient tether strategy that makes use of S so that the cost of the tether strategy

is f (α,β) ·T . Determine f (α,β) precisely.

We can also consider the Offline-variant of the problem. In this case the graph is fully known. To the

best of our knowledge the complexity of the Offline-variant (computing the best strategy) is not known.

Since in the case that the tether is very long, the Hamiltonian-path problem appears to be part of the

problem, the problem is assumed to be NP-hard.

If the optimal Offline-strategy is not known, we can design an Offline-strategy that approximates the

optimal strategy. We consider the accumulation variant and assume that the accumulator has size 4r.

Lemma 1.22 Let us assume that an accumulator of size 4r is given. There is a simple Offline algorithm

that explores a graph of depth r with no more than 6|E| steps.

32 Chapter 1 Labyrinths, grids and graphs

Proof. We consider the DFS walk among the edges of the graph which requires 2|E| steps. Now we split

this overall path into pieces of size 2r. Similarly to the simulation in the proof above we successively

move to the start vertices of these subpaths, follow the DFS path for 2r steps and return to the start

after that. In total the accumulator of size 4r is sufficient. Moving along the DFS path gives 2|E| steps.

There are no more than
⌈

2|E|
2r

⌉

sub-paths that require no more that
⌈
|E|
r

⌉

2r steps in total. We have
⌈
|E|
r

⌉

2r ≤
(
|E|
r +1

)

2r ≤ 2|E|+2r which shows that 4|E|+2r ≤ 6|E| is sufficient. !

From now on we consider only the tether variant, for the accumulation variant similar results can be

shown. A first simple idea is to take the tether length for the DFS walk into account.

Just performing DFS is not always possible. A BFS approach is always possible but results in too

many exploration steps; see Figure 1.29. Therefore we apply DFS with the tether restriction as given in

Algorithm 1.9. There is a backtracking step, if the tether is fully exhausted. We call this algorithm bDFS

for bounded DFS.

(i)

(ii)

S

S

Figure 1.29: (i) A Graph with n vertices and with depth r = 1, pure DFS would require a tether of length n−1. (ii)
A graph of depth n, BFS with a tether of length n requires Ω(n2) steps.

s 1 2 3 . . .

ℓ− 1

ℓ

v

. . .

Figure 1.30: bDFS kann einige Knoten nicht erreichen.

Algorithm 1.9 boundedDFS

bDFS(v, ℓ):

if (ℓ= 0)∨ (no adjacent non-explored edges) then

RETURN

end if

for all non-explored edge (v,w) ∈ E do

Move from v to w along (v,w).
Mark (v,w) as explored.

bDFS(w, ℓ−1).

Move back from w to v along (v,w).
end for

In general bDFS is not sufficient for the full exploration of a graph. For example in Figure 1.30 we

have the problem that the dark-colored vertices cannot be reached, if the algorithm first chooses the path

along the vertices 1,2, . . . ,ℓ− 1, visits vertex l, v and s and winds back to the start s. The path from s

over v is short enough but will not be considered by bDFS.

1.5 Constrained graph-exploration 33

Therefore we would like to call bDFS from different sources. The aim is to achieve a constant

competitive algorithm. In Algorithm 1.10 we maintain a set of (edge) disjoint trees T = {T1,T2, . . . ,Tk }
with root vertices s1,s2, . . . ,sk, respectively. The trees still contain incomplete vertices where not all

adjacent edges have been visited. We choose a tree Ti with the minimal distance from s to root si among

all trees of T . From this tree we prune subtrees Twj
with root vertices w j, so that w j is a certain distance

(minDist = αr
4) away from s and Twj

has a certain minimal depth (determined over minDepth = αr
2).

Those trees will be inserted into T . The pruning forces the trees of T to have a minimum size, it is still

worth visiting them.

After pruning, the rest of Ti will be explored by DFS and if an incomplete vertex will be found, we

start bDFS with the current remaining tether length for the exploration of new edges. The newly explored

edges and vertices build a graph G′. If G′ has incomplete vertices, we construct a spanning tree T’ with

a root vertex s′, where s′ is the vertex in T ′ closest to s in the current overall explored graph G∗. T ′ will

be inserted into T . After the overall DFS (and bDFS) walk in Ti we delete all trees of T that are now

fully explored. Some of the trees in T might have common vertices. We merge those trees and build a

new spanning tree for them with a new root vertex.

A scheme of the algorithm is shown in Figure 1.31. We have done the prune step by values (2,4).
Otherwise, we have to build very large example graphs.

I. Auswahl next!

II. Pruning: (2,4), neuer Tree!

III. DFS im Restbaum! Enfernen!
IV. bDFS starten

V. Spanning Tree, neuer Tree!VI. Fertig! Entfernen!

s

T1

T3

s1

s2

s3

{T1,T2,T3}

T2

w

Tw

T ′

{Tw,T ′,T3}

Figure 1.31: The algorithm maintains a set of disjoint trees T = {T1,T2,T3} and choose the tree T2 with minimal
distance dG∗(s,si). After that the tree is pruned. Subtrees of distance 2 away from s2 with vertices inside that have
distance at least 4 from s2 are cut-off. After that DFS starts on the rest of T2 and starts bDFS on the incomplete
vertices. Here some new graphs G′ will be explored and we build spanning trees T ′ for them. Some trees in T get
fully explored. Tw und T ′ are added to T , the tree T2 is deleted.

In the following let dG′(v,w) denote the distance between vertices v and w in the subgraph or tree G′.

G∗ = (V ∗,E∗) denotes the currently known part of G.

The algorithm makes us of the following subdivision of vertices:

non-explored a vertex, which was never been visited before.

incomplete a vertex already visited before but some of the adjacent edges are still non-explored.

34 Chapter 1 Labyrinths, grids and graphs

Algorithm 1.10 CFS

CFS(s, r, α)

T := {{s}}.

repeat

Ti := closest subtree of T to s in G∗.

si := vertex of Ti closest to s n G∗.

(Ti,Ti) := prune(Ti, si,
αr
4 , αr

2).

T := T \{Ti}∪Ti.

explore(T ,Ti,si,(1+α)r).

Delete fully explored trees from T .

Merge the trees of T with common vertices.

Define a root vertex closest to s in G∗.

until T = /0

prune(T , v, minDist, minDepth)

v := Wurzel von T .

Ti := /0.

for all w ∈ T with dT (v,w) = minDist do

Tw := subtree of T with root w.

if maximale Distanz between v and a vertex in Tw > minDepth then

// Cut-Off Tw from T ab:

T := T \Tw.

Ti := Ti ∪{Tw}.

end if

end for

RETURN (T,Ti)

explore(T , T , si, ℓ)

Move from s to si along shortest path in G∗.

Explore T by DFS. If incomplete vertex occurs, do:

ℓ′ := remaining tether length.

bDFS(v, ℓ′).

E ′ := set of newly explored edges.

V ′ := set of vertices of E ′.

Calculate spanning tree T ′ for G′ = (V ′,E ′).
Define root vertex of T ′ closest to s in G∗

T := T ∪{T ′}.

Move back from si to s.

1.5 Constrained graph-exploration 35

explored a vertex, that was visited and all adjacent edges have been explored.

Additionally, for the bDFS walk we mark the edges as ’non-explored’ or ’explored’.

Lemma 1.23 The following properties hold during the execution of the CFS–Algorithm:

(i) Any incomplete vertex belongs to a tree in T .

(ii) Until G∗ ̸= G, there is always an incomplete vertex v ∈V ∗ so that dG∗(s,v) ≤ r.

(iii) For any chosen root vertex si: dG∗(s,si)≤ r.

(iv) After pruning Ti is fully explored by DFS. All trees T ∈ T have size |T |≥ αr
4 .

(v) All trees T ∈ T are disjoint (w.r.t. edges).

Proof.

(i) Follows directly from the construction of the trees by bDFS and Pruning. No incomplete vertex is

missing.

(ii) Assume that for all v ∈V ∗ we have dG∗(s,v)> r and let v be an incomplete vertex of V ∗. In G there

is a shortest path P(s,v) from s to v with length ≤ r. Along P(s,v) there is a first vertex w that does

not belong to G∗. Thus its predecessor w′ along P(s,v) belongs to V ∗ and is incomplete. We have

dG∗(s,w′)≤ r.

(iii) Follows from (ii), the root of a corresponding tree T is always the vertex of T closest to s.

(iv) We show the property by successively considering the upcoming trees. Or by induction on the

number of pruning steps. In the beginning the algorithm starts with bDFS at the root s. Either, the

graph will be fully explored and we are done, or bDFS have exhausted the tether of length (1+α)r
and have visited more than (1+α)r edges. The single spanning tree T has size |T |≥ (1+α)r > αr

4 .

Let us assume that the condition holds for the trees inside T and the next pruning step happens.

Now by the next iteration we are choosing tree Ti with root si closest to s among all trees in T . After

that we prune Ti. The rest of Ti has still size |Ti| ≥
αr
4 since we cut off subtrees Tw with distance

≥ αr
2 away from si. For a corresponding subtree Tw we conclude |Tw|≥

αr
2 − αr

4 = αr
4 since there is

a vertex inside Tw that is at least distance αr
2 away from s. Now consider the remaining DFS/bDFS

combination on (the rest of) Ti. The distance from s to si is at most r.

Any incomplete vertex in the current Ti has at most distance αr
2 from si otherwise this vertex would

be part of a tree Tw that has to be considered in the pruning step. This means that at any incomplete

vertex there is a rest tether of length αr
2 which can be used for the bDFS part. If the exploration

results in another spanning tree T ′ with incomplete vertices, this tree has size at least αr
2 .

Finally fully explored trees are deleted from T which is not critical. Additionally, some other trees

might be merged and still have incomplete vertices. These trees only grow.

!

Finally, we show:

Theorem 1.24 (Duncan, Kobourov, Kumar, 2001/2006)

The CFS–Algorithm for the constrained graph-exploration of an unknown graph with known depth is

(4+ 8
α)–competitive. [DKK06, DKK01]

Proof. We split the cost for any appearing subtree TR. Let K1(TR) denote the cost for moving from s to si

in G∗. Let K2(TR) denote the cost of DFS for TR and let K3(TR) denote the cost for the bDFS exploration

done for the incomplete vertices starting at TR. The trees are edge disjoint.

The total cost is a sum of the cost for any TR. We have

∑
TR

K3(TR)≤ 2 · |E|, since bDFS only visits non-explored edges (twice).

∑
TR

K2(TR) = ∑
TR

2 · |TR|≤ 2 · |E|, the cost for all DFS walks.

For K1(TR) we have K1(TR) = 2 · dG∗(s,si) ≤ 2r. The complexity of any TR is at least αr
4 which gives

|TR|≥
αr
4 for the number of edges. We conclude r ≤ 4|TR|

α and

∑
TR

K1(TR)≤ ∑
TR

2r ≤
8

α ∑
TR

|TR|≤
8

α
|E|

INDEX

Index

•

∪ .see disjoint union

1-Layer . 14

1-Offset . 14

2-Layer . 14

2-Offset . 14

lower bound . 5

A

accumulator strategy . 31

adjacent . 8

Albers . 30

approximation . 30

Arkin .30

B

Backtrace . 19

Betke . 30

C

cell . 8

columns . 29

competitive . 35

constrained . 31

Constraint graph-exploration 31

D

DFS . 8, 11

diagonally adjacent . 8, 27

Dijkstra .19

disjoint union . 15

Duncan . 35

F

Fekete . 30

G

Gabriely .27, 29

grid-environment . 8

gridpolygon . 8, 30

I

Icking . 5, 18, 21

Itai . 8

J

Java-Applet . 18

K

Kamphans . 5, 18, 21

Klein . 5, 18, 21

Kobourov . 35

Kumar . 35

Kursawe . 30

L

Langetepe . 5, 18, 21

Layer .15

layer . 27

Lee . 19

Left-Hand-Rule . 10–13

Lower Bound . 9

lower bound . 8

M

Mitchell . 30

N

narrow passages . 20

NP-hart . 8

O

Offline–Strategy . 5

Online–Strategy . 5

Online-Strategy .8

40 INDEX

P

Papadimitriou . 8

partially occupied cells . 23

path . 8

piecemeal-condition . 30

Q

Queue . 19

R

Rimon . 27, 29

Rivest . 30

S

Schuierer . 30

Shannon . 3

Singh .30

Sleator .5

SmartDFS . 13, 14

spanning tree . 23

Spanning-Tree-Covering . 23

split-cell . 14

sub-cells . 23

Sutherland . 3

Szwarcfiter . 8

T

Tarjan . 5

tether strategy . 31

tool . 23

touch sensor .8

W

Wave propagation . 19

