Online Motion Planning MA-INF 1314 **Restricted Graphexploration**

Elmar Langetepe University of Bonn

Rep: Restricted Graphexploration

- 1. Agent with tether of length $l = (1 + \alpha)r$ (i.e., cable)
- **2**. Agent has to return after $2(1+\alpha)r$ steps (recharge accumulator)
- 3. Large graph is explorde up to bounded depth d.
- Graph has depth r
- Unit length edges
- \bullet Small α

Repetition

- Emulation: Tether variant given $l = (1 + \alpha)r$, cost T
- **Lemma:** Accumulator-variant, $2(1+\beta)r$, cost $\frac{1+\beta}{\beta-\alpha}T$
- After $2(\beta \alpha)r$ break and return
- Offline Problem, Accumulator-variant, NP-hard?
- **Lemma** 6|E| Offline-Approximation bei Accumulator size 4r
- Cut DFS in 2r parts, move to, work, return and so on

Repetition: Offline example/Refinement

$$\left\lceil \frac{2|E|}{2r} \right\rceil \times 2r + 2|E| \le 6|E|$$
 Example: $r=5$

Idea: Bounded DFS

- Example unit-length edges
- \boldsymbol{v} fully exlored, tether has ended, backtracking
- Not only bDFS

s

CFS Algorithm

- Start bDFS at different sources
- Set of (edge) disjoint **trees** $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$
- Root vertices s_1, s_2, \ldots, s_k
- Choose T_i with s_i closest to s_i move to s_i
- Pruning of T_i : Build T_{w_i} with root w_j if:
 - 1. $d_{T_i}(s_i, w_i) \geq minDist = \frac{\alpha r}{4}$
 - 2. $Depth(T_{w_i}) \geq minDepth minDist = \frac{\alpha r}{4}$
- ullet Add all T_{w_i} to $\mathcal{T}!$ Remove T_i from $\mathcal{T}!$
- Explore T_i without T_{w_i} from s_i by DFS and \blacksquare
- start bDFS at the incomplete vertices

- \bullet Graph G' of new vertices and edges \blacksquare
- Build a spanning tree T' of G
- Choose root s' with minimal distance to s
- ullet Add all these trees to \mathcal{T}
- ullet Special case: Trees in ${\mathcal T}$ gets fully explored
- ullet Trees in ${\mathcal T}$ with common egdes are joined
- Merging: Build spanning tree with new root

CFS Algorithm: Invariants Lemma

Execution CFS-Algorithm, properties hold:

- i) Any incomplete vertex belongs to a tree in \mathcal{T} .
- ii) There is always an incomplete vertex with $v \in V^*$ with $d_{G^*}(s,v) \leq r$, until $G^* \neq G$.
- iii) For any chosen root vertex s_i : $d_{G^*}(s, s_i) \leq r$.
- iv) After pruning T_i is fully explored by DFS. All trees $T \in \mathcal{T}$ have size $|T| \geq \frac{\alpha r}{4}$.
- v) All trees $T \in \mathcal{T}$ are disjoint (w.r.t. edges)

Proof: i) and v) simply hold by construction

 $G \neq G^*$: Ex. incomplete vertex with $v \in V^*$ with $d_{G^*}(s,v) \leq r$

- Ass: For all incomplete $v \in V^*$: $d_{G^*}(s,v) > r$
- Choose v incomplete with minimal $d_{G^*}(s,v)$
- Shortest path to v in G: $d_G(s,v) \leq r$
- SP is partially inside G^* , first incomplete v' of G^*
- ullet Inside V^* and incomplete
- $d_{G^*}(s, v') = d_G(s, v') \le r < d_{G^*}(s, v)$
- Contradiction to choice of v!!

For any chosen root vertex s_i : $d_{G^*}(s, s_i) \leq r$.

Any incomplete vertex of T_i behind s_i

Statement follows directly from (ii)!

After pruning T_i is fully explored by DFS.

By iii) distance $d_{G^*}(s, s_i) \leq r$

Visit vertex v of T_i

$$r(1+\alpha) - d_{G^*}(s, s_i) - d_{T_i}(s_i, v) \ge \frac{\alpha r}{2}$$

since $d_{T_i}(s_i, v) \leq \frac{\alpha r}{2}$ by pruning

All trees $T \in \mathcal{T}$ have size $|T| \geq \frac{\alpha r}{4}$.

- Start: bDFS from s, finished or $|T| \geq (1+\alpha)r > \frac{\alpha r}{4}$
- Successively: T_i , so that s_i root closest to s
- $\bullet |T_i| \geq \frac{\alpha r}{4}$
- T_i after pruning
- Pruning guarantees: $|T_i| \geq \frac{\alpha r}{4}$
- T_w cut-off by pruning: $|T_w| \ge \frac{\alpha r}{2} \frac{\alpha r}{4} = \frac{\alpha r}{4}$
- New bDFS-Trees: $d_{G^*}(s,s_i) \leq r$, $d_{T_i}(s_i,v) \leq \frac{\alpha r}{2}$ (pruned)
- At least length $\frac{\alpha r}{2}$ of tether remains for bDFS-Trees
- New spanning tree $|T'| \geq \frac{\alpha r}{4}$
- All $T \in \mathcal{T}$ have been considered

Analysis Theorem

CFS-Algorithmus for restricted graph-exploration of an unknown graph with known depth r is $(4 + \frac{8}{\alpha})$ -competitive.

Subtree T_R

- Subtree T_R , cost
- $K_1(T_R)$: path from s to s_i in G^*
- $K_2(T_R)$: Exploration by DFS
- $K_3(T_R)$: bDFS starting from incomplete vertices (Graph!)
- $\sum_{T_R} K_3(T_R) \le 2 \cdot |E|$, bDFS only visits unexplored edges
- $\sum_{T_R} K_2(T_R) = \sum_{T_R} 2 \cdot |T_R| \leq 2 \cdot |E|$, the cost of DFSI

Analysis Theorem

- Subtree T_R , cost
- $K_1(T_R)$: path from s to s_i in G^*
- $K_1(T_R) = 2 \cdot d_{G^*}(s, s_i) \le 2r$, Lemma
- Pruning: Komplexity T_R at least $\frac{\alpha r}{4}$
- $|T_R| \ge \frac{\alpha r}{4}$, which gives $r \le \frac{4|T_R|}{\alpha}$, Lemma
- $\bullet \sum_{T_R} K_1(T_R) \le \sum_{T_R} 2r \le \frac{8}{\alpha} \sum_{T_R} |T_R| \le \frac{8}{\alpha} |E|$
- $2 \cdot |E| + 2 \cdot |E| + \frac{8}{\alpha}|E|$ versus |E|
- $\bullet \le (4 + \frac{8}{\alpha})|E|$

Corollary

CFS-Algorithm for restricted graph-exploration of an unknown graph of known depth requires $\Theta(|E|+|V|/\alpha)$ steps. \blacksquare

- $K_3(T_R)$: bDFS starting from incomplete vertices, visit edges
- ullet $K_1(T_R)$ and $K_2(T_R)$ analysed by TREES T_R
- vertices and edges same size, vertex could appear in 2 trees!
- $(2+\frac{8}{\alpha}) 2|V|$ and 2|E| only for bDFS

Unknown graph of unknown depth!

- Assumption: Depth R is not known
- ▶ Heuristik: Double *r* successively ▶
- So that finally r is large enough!
- Start with r := 2, $\bowtie \log_2 R$ calls
- Means $O(\log R|E|)$ steps
- Re-exploration by bDFS could be avoided, trees!
- $O(|E| + (\log R)|V|)$ steps, **Corollary**

Unknown graph of unknown depth R!

- Improvement!
- Adjusting pruning and explore steps
- Depth and tether by circumstances: $d_{G^*}(s, s_i)$ is current r
- Algorithm still has cost: $\left(2+\frac{8}{\alpha}\right)2|V|+2|E|$
- prune $(T_i, s_i, \frac{\alpha r}{4}, \frac{\alpha r}{2})$
- Substitution by: prune $(T_i, s_i, \frac{\alpha d_{G^*}(s, s_i)}{4}, \frac{9\alpha d_{G^*}(s, s_i)}{16})$
- explore(\mathcal{T} , T_i , s_i , $(1+\alpha)r$)
- Substitution by: explore(\mathcal{T} , T_i , s_i , $(1+\alpha)d_{G^*}(s,s_i)$)

$d_{G^*}(s,s_i)$ substitute of r for explore/prune

- Start-problem: $d_{G^*}(s,s_i)=0$, $r:=\max(d_{G^*}(s,s_i),c)$
- Structural properties Lemma
 - i) Any incomplete vertex belongs to a tree in \mathcal{T} .
 - ii) There is always an incomplete vertex with $v \in V^*$ with $d_{G^*}(s,v) \leq r$, until $G^* \neq G$.
 - iii) For any chosen root vertex s_i : $d_{G^*}(s, s_i) \leq r$.
 - iv) After pruning T_i is fully explored by DFS. All trees $T \in \mathcal{T}$ have size $|T| \geq \frac{\alpha r}{4}$.
 - v) All trees $T \in \mathcal{T}$ are disjoint (w.r.t. edges)
- i), ii), iii) and v) also true for adjusted calls

Properties for adjusted explore/prune

 $r:=\max(d_{G^*}(s,s_i),c)$ where $d_{G^*}(s,s_i)$ minimal for $T_i\in\mathcal{T}$

Lemma:

- i) Any incomplete vertex belongs to a tree in \mathcal{T} .
- ii) There is always an incomplete vertex with $v \in V^*$ with $d_{G^*}(s,v) \leq r$, until $G^* \neq G$.
- iii) For any chosen root vertex s_i : $d_{G^*}(s, s_i) \leq r$.
- iv) After pruning T_i is fully explored by DFS. All trees $T \in \mathcal{T}$ have size $|T| \geq \frac{\max(d_{G^*}(s,T),c)\alpha}{4}$.
- v) All trees $T \in \mathcal{T}$ are disjoint (w.r.t. edges)
- iv) has to be shown!

After pruning: T_i is fully explored by DFS

Distance $d_{G^*}(s, s_i)$

Visit vertex v of T_i

$$(1+\alpha)d_{G^*}(s,s_i) - d_{G^*}(s,s_i) - d_{T_i}(s_i,v) \ge \frac{7d_{G^*}(s,s_i)\alpha}{16}$$

since $d_{T_i}(s_i, v) \leq \frac{9d_{G^*}(s, s_i)\alpha}{16}$ by pruning!

$$\forall T \in \mathcal{T} : |T| \ge \frac{\max(d_{G^*}(s,T),c)\alpha}{4}$$

- Start: bDFS from start, finished or $|T| \geq (1 + \alpha)c > \frac{\alpha c}{4}$
- Otherwise T_i , with s_i root closest to s, Ass.: $d_{G^*}(s,T_i)>c!$
- Show: $|T_w| \ge \frac{d_{G^*}(s, T_w)\alpha}{4}$
- ullet Tree T_i after pruning, $d_{G^*}(s,T_i)=d_{G^*}(s,s_i)$
- Pruning guarantees: $|T_i| \ge \frac{d_{G^*}(s,T)\alpha}{4}$
- T_w cut-off by pruning: $|T_w| \geq \frac{9d_{G^*}(s,s_i)\alpha}{16} \frac{d_{G^*}(s,s_i)\alpha}{4} = 5\frac{d_{G^*}(s,s_i)\alpha}{16}$
- $d_{G^*}(s,T_w) \leq d_{G^*}(s,s_i) + d_{G^*}(s_i,w) = (1+\frac{\alpha}{4})d_{G^*}(s,s_i) < \frac{5d_{G^*}(s,s_i)}{4}$, $\alpha < 1!$
- Gives: $|T_w| > \frac{d_{G^*}(s, T_w)\alpha}{4}$

$$\forall T \in \mathcal{T} : |T| \ge \frac{\max(d_{G^*}(s,T),c)\alpha}{4}$$

- Spanning trees T' after bDFS from v in T_i
- bDFS-trees after v: $d_{G^*}(s_i, v) \leq \frac{9\alpha d_{G^*}(s, s_i)}{16}$
- $d_{G^*}(s, T') \le d_{G^*}(s, s_i) + d_{G^*}(s_i, v) < \frac{25d_{G^*}(s, s_i)}{16}$
- $d_{G^*}(s, s_i) > \frac{16d_{G^*}(s, T')}{25}$
- T' incomplete
- $\bullet \ d_{G^*}(s_i, v) \le \frac{9\alpha d_{G^*}(s, s_i)}{16}$
- At least $\frac{7\alpha d_{G^*}(s,s_i)}{16}$ tether rest
- $|T'| \ge \frac{7\alpha d_{G^*}(s,s_i)}{16} > \frac{7\alpha d_{G^*}(s,T')}{25} > \frac{d_{G^*}(s,T')\alpha}{4}$
- Either explored or $|T'| > \frac{d_{G^*}(s,T')\alpha}{4}$
- ullet Any $T \in \mathcal{T}$ was considered

Analysis Theorem

CFS-Algorithmus for restricted graph-exploration of unknown graph with unknown depth is $(4+\frac{8}{\alpha})$ -competitive for $0<\alpha<1$.

Trees T_R

- Tree T_R , cost
- $K_1(T_R)$: path from s to s_i in G^*
- $K_2(T_R)$: Exploration by DFS
- $K_3(T_R)$: bDFS from incomplete vertex (Graph!)
- $\sum_{T_R} K_3(T_R) \leq 2 \cdot |E|$, since bDFS visits only unexplored edges
- $\sum_{T_R} K_2(T_R) = \sum_{T_R} 2 \cdot |T_R| \leq 2 \cdot |E|$, cost for DFSI

Analyse Theorem 1.30

- Teilbaum T_R , Kosten
- $K_1(T_R)$: path from s to s_i in G^*
- $K_1(T_R) = 2 \cdot d_{G^*}(s, s_i) \le \frac{8|T_R|}{\alpha}$
- $|T_R| \ge \frac{d_{G^*}(s,T_R)\alpha}{4} = \frac{d_{G^*}(s,s_i)\alpha}{4}$, Lemma iv)
- $\sum_{T_R} K_1(T_R) \le \sum_{T_R} 2d_{G^*}(s, s_i) \le \frac{8}{\alpha} \sum_{T_R} |T_R| \le \frac{8}{\alpha} |E|$
- $2 \cdot |E| + 2 \cdot |E| + \frac{8}{\alpha} |E|$ against E

Corollary

CFS-Algorithmus for restricted graph-exploration of unknown graph with unknown depth performs $\Theta(|E|+|V|/\alpha)$ steps for $0<\alpha<1.$