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ABSTRACT

We consider a generalization of the firefighter problem where the number of firefighters
available per time step t is not a constant. We show that if the number of firefighters
available is periodic in t and the average number per time step exceeds 3

2
, then a fire starting

at a finite number of vertices in the two dimensional infinite grid graph can be contained.



1 Introduction

A dynamic problem introduced by Hartnell[5], commonly known as the firefighter problem

can be described as follows. Given a connected rooted graph (G, r), r is initally set on
fire at time 0. At the beginning of each subsequent time period t ≥ 1, f(t) firefighters
are positioned at f(t) different vertices that are currently not on fire nor already have a
firefighter positioned. These firefighters remain on their assigned vertices and thus prevent
the fire from spreading to that vertex. At the end of each time period, all vertices that are
not defended and are adjacent to at least one vertex on fire will catch the fire and be burned.
Once a vertex is burned or defended, it remains that way permanently.

If G is a finite graph, the process ends when one of the following occurs:

(a) The fire is contained, meaning the fire is unable to spread any further, and there are
still vertices in G without a firefighter.

(b) The fire spreads until every vertex in G are either burned or defended.

If G is infinite, then (a) could still happen but the second possibility is replaced by:

(b’) The fire cannot be contained, meaning the fire spreads indefinitely.

Most of the exisiting literature considers f(t) to be a constant (usually f(t) = 1) inde-
pendent of t. This means that at every time step, the number of firefighters available for
deployment is fixed. Under this condition, the firefighter problem can be stated formally as:

FIREFIGHTER
INSTANCE: A rooted graph (G, r) and an integer k ≥ 1.
QUESTION: Is there a finite sequence d1, d2, ..., dt of vertices of G that can be defended

such that at most k vertices are burned at the end of time t?
The firefighter problem was considered on infinite grids Ld where d is the dimension by

Hartke[9], Wang and Moeller[12] and Fogarty[2]. Fogarty[2] and Hartke[9] also considered a
modified firefighter problem where fire starts at more than one vertex during at time 0. The
firefighter problem was also considered on finite grids of dimensions 2 and 3. In particular,
MacGillivray and Wang[10] and Wang and Moeller[12] studied

MV S(G, v)

= maximum number of vertices that can be saved in G if fire starts at v.

for G = Pn×Pn while Wang and Moeller[12] also considered G = Pl×Pm×Pn. Another
value

R(G, v) =
number of vertices that can be saved

number of vertices in G

where the fire starts at v was also studied by Wang and Moeller[12] and Hartke[9]. NP-
completeness of the firefighter problem on bipartite graphs was established by MacGillivray
and Wang[10]. More recently MacGillivray et.al[11] showed that the firefighter problem is
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NP-complete for trees of maximum degree three, but in P for graphs of maximum degree
three if v, the vertex where the fire breaks out at, is of degree at most two. Hartnell and Li[7]
showed that when G is a tree, the greedy algorithm is a 2-approximation algorithm to an
optimum algorithm that saves the maximum number of vertices in G. Finbow and Hartnell[1]
and Hartnell et.al[8] considered the problem of constructing graphs that minimizes the effect
of fire spreading. Other related publications include [3, 4, 6].

For a two dimensional infinite grid L2, Wang and Moeller[12] showed that when f(t) = 1
for all t ≥ 1 (one firefighter per time step) is insufficient to prevent the fire from spreading
indefinitely while f(t) = 2 for all t suffices. It was further proven by Hartke[9] when f(t) = 2
for all t, a minimum of 8 time steps are required to successfully contain the fire, resulting
in a minimum of 18 vertices being burned. In this paper, we propose a generalization of
the firefighter problem, called the fractional firefighter problem where f(t) is no longer a
constant. We will consider the two dimensional infinite grid L2 defined by

V = Z× Z

E = {((m, n), (m′, n′))||m−m′|+ |n− n′| = 1}

Our function f(t) is periodic with period p and for each t ≥ 1, f(t) ∈ N. This allows us to
define the following firefighter ratio

R(f) =

∑p

i=1 f(i)

p

which is simply the average number of firefighters we have for deployment at each time step.
For any given (G, r), a general question that can be asked is if there a real number R(G, r)
such that any function f(t) with ratio R(G, r) cannot contain the fire, yet any function g(t)
with ratio greater than R(G, r) can.

For the case when G = L2, we assume without loss of generality that r = (0, 0). In this
paper, we shall show that any function f(t) with ratio greater than 3

2
is sufficient to contain

the fire in L2. Thus, if R(L2, r) exists, then 1 ≤ R(L2, r) ≤
3
2
.

2 Terminology, Notation and Assumptions

Throughout this paper, we let G = L2 and assume that the fire starts at r = (0, 0). For
m ≥ 1, let Dm represent the set of vertices in G that are at distance m from r. A vertex of
L2 that is on fire and has at least one adjacent vertex not on fire and without a firefighter
positioned there is called an active vertex.

All functions f(t), t ≥ 1, are assumed to be periodic and we write f instead of f(t)
if there is no confusion. We identify f with a sequence of its period. Therefore, [2,1,2,2]
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corresponds to a function f such that for k ≥ 0,

f(4k + 1) = 2

f(4k + 2) = 1

f(4k + 3) = 2

f(4k) = 2

We see that the firefighter ratio for this example is 1.75. There is a partial order associated
with these functions, defined by

f � g ⇐⇒ ∀n ∈ N

(

n
∑

i=1

f(i) ≤

n
∑

i=1

g(i)

)

If f and g have periods pf and pg respectively, then we see that

f � g ⇐⇒ ∀n, 1 ≤ n ≤ lcm(pf , pg)

(

n
∑

i=1

f(i) ≤

n
∑

i=1

g(i)

)

For each n ∈ N, we define fn to be a function of period 2n + 1 as follows:

fn(i) =

{

1 if 1 ≤ i (mod 2n + 1) ≤ n;
2 otherwise.

For example, f1 = [1, 2, 2] and f2 = [1, 1, 2, 2, 2]. The firefighter ratio for fn is

n + 2(n + 1)

2n + 1
=

3n + 2

2n + 1
= 1 +

n + 1

2n + 1

which we see is always greater than 1.5, and that the ration approaches 1.5 as n approaches
infinity.

In the next section, we will show that for each n ∈ N, the sequence of firefighters repre-
sented by the function fn is always sufficient to contain a fire that starts at (0, 0). In fact,
a simple corollary will show that even if the fire starts at any finite number of vertices, fn

is still sufficient to contain the fire. Our main goal is to provide a strategy detailing the
placement of the firefighters at each time step.

3 The strategy

The complete strategy is divided into phases, described below:

(i) Phase 1 (P1) The fire starts at (0, 0). During phase 1, at each (odd) time t = 2k +1,
k ≥ 0, one firefighter must be positioned at (k,−k − 1). These firefighters are called
retreat firefighters as they make sure that the fire does not wrap around the ‘firewall’
(a contiguous line of firefighters) from below. All other firefighters positioned during
this phase are called advance firefighters. Advance firefighters’ role is to be aggressive
and gain as much ground as they can on the fire. The positions of advance firefighters
must satisfy the following:
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(a) At time t = 2, one advance firefighter must be positioned at (−1,−1).

(b) If there is one advance firefighter at (x1, y1), then there must be one at (x2, y2)
such that x2 = x1 − 1 and |y2 − y1| ≤ 1.

Phase 1 is completed when one advance firefighter is positioned at (−C1, 0) for some
C1 > 0.

(ii) Phase 2 (P2) In phase 2, retreat firefighters continue to be positioned in the same way
as in phase 1. Advance firefighters now attempt to ‘overtake’ the progress of the fire
at some point directly above the root. Specifically, the positions of advance firefighters
placed during this phase must satisfy the following:

(c) Continuing on from the position (−C1, 0) in phase 1, if there is one advance
firefighter at (x1, y1), then there must be one at (x2, y2) such that y2 = y1 +1 and
|x2 − x1| ≤ 1.

Phase 2 is completed when one advance firefighter is positioned at (0, C2) for some
C2 > 0.

(iii) Phase 3 (P3) In phase 3, retreat firefighters continue to be positioned in the same
way. Advance firefighters, after having overtaken the fire at the top, now starts its
move towards the diagonal line of retreat firefighters. This commences the ‘closing
up’ stage. Specifically, the positions of advance firefighters placed during this phase
satisfies the following:

(d) Continuing on from the position (C2, 0) in phase 2, if there is one advance fire-
fighter at (x1, y1, then there must be one at (x2, y2) such that x2 = x1 + 1 and
|y2 − y1| ≤ 1.

Phase 3 is completed when one advance firefighter is positioned at (C3, 0) for some
C3 > 0.

(iv) Phase 4 (P4) In this final phase, while the retreat firefighters continue to prevent the
fire from wrapping around the firewall, advance firefighters continue its ‘descend’ to
meet the retreat firefighters. This ‘closes up’ the boundary of firefighters and prevents
any further spread of the fire.

Suppose for some n ∈ N, the sequence of firefighters available for deployment is fn. We
now proceed to prove that each of the 4 phases Pi, can be completed at some finite time ti,
i = 1, 2, 3, 4.

Proposition 3.1 Phase 1 can be completed after t1 = 2n time steps.

Proof: If n = 1, phase 1 can be completed by positioning firefighters at (0,-1) when
t = 1, (-1,-1) and (-2,0) when t = 2. Let us first consider the case when n ≥ 2 is even:
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During the first n time steps, we have one firefighter to deploy per time step. For
t = 2k + 1, 0 ≤ k ≤ n

2
− 1, position one firefighter at (k,−k − 1), these are the retreat

firefighters. For t = 2k, 1 ≤ k ≤ n
2
, position one firefighter at (−k,−k). Note that all these

positions for the firefighters are valid, (that is, the positions are not on fire at the time a
firefighter is positioned there) as each position chosen at time t is precisely at distance t from
(0, 0).

For t = n + 1, n + 2, ..., 2n, we have two firefighters to deploy per time step. We continue
to deploy one firefighter at (k,−k − 1) at times t = 2k + 1, n

2
≤ k ≤ n− 1. We are left with

one firefighter for deployment at times t = 2k + 1, n
2
≤ k ≤ n − 1 and two firefighters for

deployment at times t = n + 2, n + 4, ..., 2n. We write these times as n + m, m = 1, 2, ..., n.
For m = 1, 3, ..., n− 1, we have one firefighter and we deploy it at (−n

2
− 3m−1

2
,−n

2
+ m−1

2
).

For m = 2, 4, ..., n, we have two firefighters and we deploy them at (−n
2
− 3m−2

2
,−n

2
+ m

2
− 1)

and (−n
2
− 3m

2
,−n

2
+ m

2
). It is easy to verify that the positions of these firefighters are again

valid, as the position of a firefighter deployed at time t is again at distance t from (0, 0).
With the described deployment, we see that when m = n, t = 2n and the last firefighter
deployed would be at (−2n, 0) (so C1 = 2n). For illustrative purposes, we show the positions
of the firefighters deployed for the case when n = 6 in Figure 1. The filled circle represents
the position of (0,0) while the number inside each empty circle represents the time step when
the firefighter is positioned there.
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Figure 1

The case when n is odd is very similar. For the first n time steps, we have one firefighter
to deploy per time step. For t = 2k + 1, 0 ≤ k ≤ n−1

2
, position one firefighter at (k,−k − 1)

(retreat firefighters). For t = 2k, 1 ≤ k ≤ n−1
2

, position one firefighter at (−k,−k). For
t = n + 1, n + 2, ..., 2n, we have two firefighters to deploy per time step. We continue to
deploy one firefighter at (k,−k − 1) at times t = 2k + 1, n+1

2
≤ k ≤ n− 1. We are left with

one firefighter for deployment at times t = 2k + 1, n+1
2
≤ k ≤ n − 1 and two firefighters for

deployment at times t = n + 1, n + 3, ..., 2n. We write these times as n + m, m = 1, 2, ..., n.
For m = 2, 4, ..., n−1, we have one firefighter and we deploy it at (−n

2
− 3m−1

2
,−n

2
+ m−1

2
). For

m = 1, 3, ..., n, we have two firefighters and we deploy them at (−n
2
− 3m−2

2
,−n

2
+ m

2
−1) and

(−n
2
− 3m

2
,−n

2
+ m

2
). Note again that all these positions for the firefighters are valid. With

the described deployment, we see that when m = n, t = 2n and the last firefighter deployed
would be at (−2n, 0). For illustrative purposes, we show the positions of the firefighters
deployed for the case when n = 7 in Figure 2.
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Figure 2

This proves Proposition 3.1.
2

Before we proceed to prove that phase 2 can be completed at some finite time t2, we first
consider a slightly modified version of the firfighter problem. Supposed the fire still starts
at (0,0), but the arrival of the firefighters is delayed in the sense that the deployment of the
firefighters does not commence until some time d > 1. This means that by the time the
sequence of firefighters corresponding to fn is available for deployment, all vertices in Di,
i = 1, ..., d − 1 are already on fire. This is equivalent to considering the firefighter problem
where we can start deploying firefighters at t = 1, but all the vertices in ∪d

i=1Di are initially
set on fire.

Proposition 3.2 Suppose all vertices in ∪d
i=1Di are initially set on fire and fn corre-

sponds to the firefighter sequence. The firefighters can be postioned in such a way that at
time t = d(4n + 2), the following conditions are satisfied:

(i) At each (odd) time t = 2k + 1, k ≥ 0, one retreat firefighter must be positioned at
(k,−d− k − 1).

(ii) At time t = 2, one advance firefighter is positioned at (−1,−d− 1).

(iii) If there is one advance firefighter at (x1, y1), then there must be one at (x2, y2) such
that x2 = x1 − 1 and |y2 − y1| ≤ 1.

(iv) At time t = d(4n + 2), there is one advance firefighter at (−d(4n + 3), 0).

Proof: Due to the periodic nature of the number of firefighters available for deployment
we will only provide a strategy for deployment for the first 4n + 2 time steps. The way the
firefighters are deployed beyond that follows a similar pattern. The strategy for deployment
is very similar to that given in Proposition 3.1, the only difference is that the positions of
the firefighters are somewhat ”shifted down” due to the vertices in ∪d

i=1Di being initially set
on fire. First consider when n is even:

(a) For t = 2k + 1, 0 ≤ k ≤ n
2
− 1, (that is, t = 1, 3, 5, ..., n− 1) we have one firefighter to

deploy. Position the firefighter at (k,−d− k − 1).
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(b) For t = 2k, 1 ≤ k ≤ n
2
, (that is, t = 2, 4, 6, ..., n) we have one firefighter to deploy.

Position the firefighter at (−k,−d − k).

(c) For t = n+m, where m is odd and 1 ≤ m ≤ n+1, (that is, t = n+1, n+3, ..., 2n+1) we
have two firefighters to deploy. At time t = n+m = 2k+1, 1 ≤ m ≤ n+1, n

2
≤ k ≤ n,

position one firefighter each at (k,−d− k − 1) and (−n
2
− 3m−1

2
,−d− n

2
+ m−1

2
).

(d) For t = n + m, where m is even and 2 ≤ m ≤ n, (that is, t = n + 2, n + 4, ..., 2n) we
have two firefighters to deploy. We deploy them at (−n

2
− 3m−2

2
,−d− n

2
+ m

2
− 1) and

(−n
2
− 3m

2
,−d− n

2
+ m

2
).

(e) For t = 2(n + k) + 1, 1 ≤ k ≤ n
2
, (that is, t = 2n + 3, 2n + 5, ..., 3n + 1) we have one

firefighter to deploy. Position the firefighter at (n + k,−d− n− k − 1).

(f) For t = 2(n + k), 1 ≤ k ≤ n
2
, (that is, t = 2n + 2, 2n + 4, ..., 3n) we have one firefighter

to deploy. Position the firefighter at (−2n− k − 1,−d− k + 1).

(g) For t = 3n+m, where m is odd and 3 ≤ m ≤ n+1, (that is, t = 3n+3, 3n+5, ..., 4n+1)
we have two firefighters to deploy. At time t = 3n + m = 2(n + k) + 1, 3 ≤ m ≤
n + 1, n

2
+ 1 ≤ k ≤ n, position one firefighter each at (n + k,−d − n − k − 1) and

(−2n− n
2
− 3m−1

2
,−d− n

2
+ m−1

2
).

(h) For t = 3n+m, where m is even and 2 ≤ m ≤ n+2, (that is, t = 3n+2, 3n+4, ..., 4n+2)
we have two firefighters to deploy. We deploy them at (−2n− n

2
− 3m−2

2
,−d− n

2
+ m

2
−1)

and (−2n− n
2
− 3m

2
,−d− n

2
+ m

2
).

Observe now that at the end of time t = 4n + 2, by putting m = n + 2 in (h) above, we
would have a firefighter at (−4n − 3,−d + 1). This proves the propostion when d = 1 and
for d > 1, we just repeat the strategy above for another (d− 1)(4n + 2) time steps.

The case when n is odd is again very similar. We again provide a strategy for deployment
of the firefighters for the first 4n + 2 time steps.

(a) For t = 2k+1, 0 ≤ k ≤ n−1
2

, (that is, t = 1, 3, 5, ..., n) we have one firefighter to deploy.
Position the firefighter at (k,−d− k − 1).

(b) For t = 2k, 1 ≤ k ≤ n−1
2

, (that is, t = 2, 4, 6, ..., n−1) we have one firefighter to deploy.
Position the firefighter at (−k, d− k).

(c) For t = n + m, where m is odd and 1 ≤ m ≤ n, (that is t = n + 1, n + 3, ..., 2n) we
have two firefighters to deploy. We deploy them at (−n−1

2
− 3m−1

2
,−d− n−1

2
+ m−1

2
−1)

and (−n−1
2
− 3m−1

2
− 1,−d− n−1

2
+ m−1

2
).

(d) For t = n+m, where m is even and 2 ≤ m ≤ n+1, (that is, t = n+2, n+4, ..., 2n+1) we
have two firefighters to deploy. At time t = n+m = 2k+1, 2 ≤ m ≤ n+1, n+1

2
≤ k ≤ n,

position one firefighter each at (k,−d− k − 1) and (−n−1
2
− 3m

2
,−d− n−1

2
+ m

2
− 1).
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(e) For t = 2(n + k), 1 ≤ k ≤ n+1
2

, (that is, t = 2n + 2, 2n + 4, ..., 3n + 1) we have one
firefighter to deploy. Position the firefighter at (−2n− k − 1,−d + k + 1).

(f) For t = 2(n + k) + 1, 1 ≤ k ≤ n−1
2

, (that is, t = 2n + 3, 2n + 5, ..., 3n) we have one
firefighter to deploy. Position the firefighter at (n + k,−d− n− k − 1).

(g) For t = 3n+m, where m is even and 2 ≤ m ≤ n+1, (that is, t = 3n+2, 3n+4, ...4n+1)
we have two firefighters to deploy. At time t = 3n + m = 2(n + k) + 1, 2 ≤ m ≤
n + 1, n+1

2
≤ k ≤ n, position one firefighter each at (n + k,−d − n − k − 1) and

(−2n− n+1
2
− 3m

2
+ 1,−d− n+1

2
+ m

2
).

(h) For t = 3n+m, where m is odd and 3 ≤ m ≤ n+2, (that is, t = 3n+3, 3n+5, ..., 4n+2)

we have two firefighters to deploy. We deploy them at (−2n− n+1
2
− 3(m−1)

2
,−d− n+1

2
+

m−1
2

) and (−2n− n+1
2
− 3(m−1)

2
− 1,−d− n+1

2
+ m−1

2
+ 1).

Observe now that at the end of time t = 4n + 2, by putting m = n + 2 in (h) above, we
would have a firefighter at (−4n − 3,−d + 1). This proves the proposition when d = 1 and
for d > 1, we just repeat the strategy above for another (d− 1)(4n + 2) time steps.

This completes the proof of the Proposition 3.2.
2

Proposition 3.3 Phases 1 and 2 can be completed in t2 = (2n)(4n + 2) time steps.

Proof: Figure 3 shows L2 after the completion of phase 1. The firefighter at (−2n, 0)
has just been positioned at time t1 = 2n and the area enclosed by the bold lines indictates
the area where vertices are burned after time t = 2n.

Figure 3

At time t = 2n + 1, we have two firefighters to deploy. As usual, deploy one as a retreat
firefighter at (n,−n− 1) and deploy the other at (−2n, 1). Figure 4 is essentially the same
as Figure 3, only that the two firefighters at time t = 2n + 1 have been deployed and we
rotated Figure 3 by 90o in the counter-clockwise direction.

Notice now that to complete phase 2, we need to progress the sequence of advance
firefighters ‘upwards’ (by looking at Figure 4) so that it reaches the same ‘horizontal’ (again
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with respect to Figure 4) level as (0, 0), while at the same time, continuing to deploy one
retreat firefighter at every odd time t. This is similar to the scenario in Proposition 3.2
where the advance firefighters have 2n levels to move upwards before being able to position
one at (0, C2).

We could calculate explicitly C2 and the time t2 by using Proposition 3.2. The number
of firefighters available at t = 2n + 2 is 1, as we are at the beginning of a new period. The
number of time periods needed to move up 1 level is one less than what was calculated in
Proposition 3.2 because of the firefighter already at (−2n, 1) saves us 1 move. Due to the
periodic nature of fn, we see that phase 2 can be completed at t2 = 2n (for phase 1) +
2n(4n+1) (for phase 2) = 2n(4n+2). Thus, C2 = 2n(4n+2) and the proof of Proposition
3.3 is complete.

Figure 4

2

Proposition 3.4 Phases 1, 2 and 3 can be completed in t3 = 2n(4n + 2)(4n + 3) time
steps.

Proof: Figure 5 shows L2 after the completion of phases 1 and 2. The firefighter at
(0, 2n(4n + 2)) has just been positioned at time t2 = 2n(4n + 2) and the area enclosed by
the bold lines indicates the area where vertices are burned after t = 2n(4n + 2).

Note that at the next time step t = 2n(4n+2)+1, we are at the beginning of the period
and have 1 firefighter for deployment. Figure 6 is the same as Figure 5, but rotated by 180o.
Similar to the proof of Proposition 3.3, we see that to complete phase 3, we need to progress
the sequence of advance firefighters ‘upwards’ (by looking at Figure 6) so that it reaches the
same ‘horizontal’ (again with respect to Figure 6) level as (0, 0). By Proposition 3.2, we
know that this can be accomplished in d(4n + 2), where d = 2n(4n + 2), time steps.
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Thus, phases 1, 2 and 3 can be completed at t3 = 2n(4n + 2) (for phases 1 and 2) +
2n(4n + 2)2 (for phase 3) = 2n(4n + 2)(4n + 3). We have C3 = 2n(4n + 2)(4n + 3) and the
proof of Proposition 3.4 is complete.

Figure 5

Figure 6

2

Proposition 3.5 Phases 1, 2, 3 and 4 can be completed in t4 = 64n3 +64n2 +20n time
steps.

Proof: Throughout this proof, we shall denote 2n(4n + 2)(4n + 3) by C3. At the end

of time t3 = C3, we have positioned an advance firefighter at (C3, 0), the retreat firefighter
furthest from r is at (C3

2
− 1,−C3

2
). Furthermore, the set of all active vertices are {(C3

2
+

i,−C3

2
+ i)|i = 0, 1, ..., C3

2
− 1} ⊆ DC3

.
Figure 7 shows the positions of the following:

(a) The retreat firefighter furthest from r, positioned during time t = C3 − 1 (marked 1);
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(b) The advance firefighter at (C3, 0), positioned during time t = C3 (marked 2);

(c) The active vertices, at the end of time t = C3, forming a diagonal from (C3

2
,−C3

2
)

(marked 3) to (C3− 1,−1) (marked 4). Note that there are exactly C3

2
active vertices.

Figure 7

We first show that if for t ≥ C3+1, we only have one firefighter per turn, then the number
of active vertices at the end of each turn can be kept a constant. To see this, consider Figure
8, which shows only the retreat firefighter furthest from r at time t = C3, the advance
firefighter at (C3, 0) and for simplicity, only 3 active vertices.
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m }
}

}
m

m
}

}
}

m }
}

}
m

m
}

}
}

}
}

}
m

Figure 8 Figure 9 Figure 10
At time t = C3 + 1, we position one retreat firefighter at (C3

2
,−C3

2
− 1), the fire spreads

and we still have 3 active vertices (Figure 9). At time t = C3 + 2, we position one advance
firefighter at (C3 + 1,−1), the fire spreads and again we have 3 active vertices (Figure 10).
We are back at the same situation as in Figure 8. Thus if we have only one firefighter per
time step from t ≥ C3 + 1, the number of active vertices can be kept at a constant of C3

2
.

We now proceed to show that if the number of firefighters corresponds to the function
fn, phases 1,2,3 and 4 can be completed in t4 = 64n3 + 64n2 + 20n time steps. Note that at
t = C3 + 1, we are at the beginning of the period again. As discussed above, at each time
t where there is only one firefighter for deployment does not reduce the number of active
vertices. On the other hand, at each t where there are two firefighters for deployment, the
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number of active vertices is reduced by exactly one. This is regardless of whether t is even
or odd. Figures 11 and 12 illustrates this observation.

m }
}

}
m

m }
}

}
m

m
}

}
m

Figure 11(a) (t odd) - beginning of t Figure 11(b) (t odd) - end of t

m
}

}
}
m

m
}

}
}
m

}
}

m
m

Figure 12(a) (t even) - beginning of t Figure 12(b) (t even) - end of t

Since there are C3

2
active vertices at the beginning of time t = C3 +1, and in each period,

there are n + 1 time steps where we have two firefighters for deployment, it can be easily
verified that a total of (16n2 + 4n + 1) periods and an additional 2n − 1 turns in the next
period is required. Thus,

t4 = t3 + (2n + 1)(16n2 + 4n + 1) + 2n− 1

= 2n(4n + 2)(4n + 3) + 32n3 + 24n2 + 8n

= 64n3 + 64n2 + 20n

This completes the proof of Proposition 3.5.
2

Corollary 3.6 Suppose at time t = 0, fire breaks out at a finite number of vertices in
L2. For any n ∈ N, a sequence of firefighters corresponding to fn is able to contain the fire.

Proof: Let M = max{d((0, 0), (x, y))|(x, y) is on fire at time 0}. By Proposition 3.2, if
we assume all vertices in ∪M

i=1Di are initially set on fire, then fn allows us to complete phase
1. Phases 2,3 and 4 can also be completed by arguments similar to Propositions 3.3 to 3.5,
even though the time it takes for the completion of these phases are different.

2
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The next two lemmas are required in order to prove the final theorem in this paper.
Lemma 3.7 Let f and g be two functions corresponding to two periodic sequences with

periods pf and pg respectively. We assume f(i), g(i) ≥ 1 for all i. If f � q and the fire can
be contained using f , then the fire can be contained using g.

Proof: Let s = lcm(pf , pg). If f(i) ≤ g(i) for each 1 ≤ i ≤ s, then using g ,we
simply follow the deployment strategy for f . Additional firefighters at each time step can
be positioned arbitrarily, and the fire can be contained. If there exists k ≥ 2 such that
f(k) > g(k), let k∗ = min{k|f(k) > g(k)} and x = f(k∗)− g(k∗). Since f � g, we have

k∗
−1
∑

i=1

g(i)− f(i) ≥ x.

To contain the fire using g, we follow the deployment strategy for f for time t = 1, 2, ..., k∗−1.
There are at least x ‘extra’ firefighters during these time steps and we position them ‘in
advance’ in accordance to the deployment strategy of f at time k∗. So, together with the
g(k∗) firefighters, we will be able to follow the deployment strategy of f at time k∗. All other
k such that f(k) > g(k) can be treated similarly.

2

Lemma 3.8 If g is a function with firefighter ratio strictly greater than 3
2
, then there is

an n ∈ N such that fn � g.

Proof: Let pg be the period of g. If pg is odd, then f pg−1

2

� g. If pg is even, then

f pg

2
−1 � g.

2

Finally, we have the following theorem.
Theorem 3.9 If g(i) ≥ 1, ∀i is a periodic sequence with ratio strictly greater than 3

2
,

then g(i) is able to contain the fire that breaks out at (0, 0). Consequently, if R(L2, r) exists,
then 1 ≤ R(L2, r) ≤

3
2
.

2

Remarks:

(1) Note that even if the fire breaks out at a finite number of vertices in L2, g(i) is still
able to contain the fire.

(2) An algorithm implementing the strategy described in this section was written in C
language and tested. All the completion times for the four phases were tested exper-
imentally and found to be correct. A pseudocode for the algorithm can be found in
Appendix A.

4 Conclusion

In this paper, we have introduced a generalized firefighter problem where the number of
firefighters available for deployment per time step, f(t), does not have to be a constant. We
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specifically looked at the two dimensional infinite grid graph and attempted to ‘reconcile’
the results for f(t) = 1 for all t (not able to contain fire) and f(t) = 2 for all t (able to
contain fire). This lead us to consider periodic functions f and the definition of R(G, r)
for any rooted graph (G, r). Although it is still unknown as to whether R(L2, r) exists, we
believe that it does, and we conclude this paper with the following conjecture.

Conjecture If g(i) ≥ 1, ∀i is a periodic sequence with ratio less than or equal to 3
2
, then

g(i) is unable to contain the fire that breaks out at (0, 0). Thus R(L2, r) exists and is equal
to 3

2
.
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Appendix A

Input: Turn #, phase

Algorithm:

F := f(turn #) [number of fighters]

If (turn # = 2k+1 for some k) then

place fighter at (k,-(k+1))

F ← F-1

fi

while F > 0 do

(x,y) = location of the fighter on the edge of the advance line

if phase = 1 then

if(x-1,y) is on fire then

place fighter at (x-1,y-1)

else if (x-1,y+1) is on fire then

place fighter at (x-1,y)

else

place fighter at (x-1,y+1)

fi

F ← F-1

CheckPhase()

else if phase = 2 then

if(x,y+1) is on fire then

place fighter at (x-1,y+1)

else if (x+1,y+1) is on fire then

place fighter at (x,y+1)

else

place fighter at (x+1,y+1)

fi

F ← F-1

CheckPhase()

else if phase = 3 then

if(x+1,y) is on fire then

place fighter at (x+1,y+1)

else if (x+1,y-1) is on fire then

place fighter at (x+1,y)

else

place fighter at (x+1,y-1)

fi

F ← F-1

CheckPhase()

else
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if(x+1,y) is on fire then

place fighter at (x+1,y-1)

else if (x+1,y-1) is on fire then

place fighter at (x+1,y)

else

place fighter at (x+1,y+1)

fi

F ← F-1

fi

od

CheckPhase()

if there is a fighter at (k,0) for k>0 then

phase = 4

else if there is a fighter at (0,k) for k > 0 then

phase = 3

else if there is a fighter at (k,0) for k < 0 then

phase = 2

else

phase = 1
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