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3.3.2 Routing in Hypercubes

An n-dimensional cube is called a hypercube. A standard definition of a hypercube is
undirected, has 2n vertices and n2n−1 edges since every vertex has undirected edges
to n other vertices. We define a directed version, where every undirected edges is
replaced by two directed edges of opposite direction, thus there are n2n edges in total.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

For an integer i ∈ {0, . . . , 2n − 1}, let bin(i) be its binary representation. For two bit
strings x, y ∈ {0, 1}n, let h(x, y) be the Hamming distance of x and y, i.e. the number
of bits in which x and y differ.

Definition 3.12. Let Hn = {Vn, En} be the directed graph defined by

Vn = {0, . . . , 2n − 1}
En = {(i, j) | h(bin(i), bin(j)) = 1}

Our problem consists of simultaneously sending 2n packages between the vertices of
Hn. Each vertex i ∈ Vn is the starting point of one package which we name ai. The
input is a permutation π : Vn → Vn that defines the destination π(i) for ai for every
i ∈ Vn. The routing strategy has to choose one path P (i) from i to π(i) for every
i ∈ Vn. The execution of a routing (consisting of paths P (i) for all i ∈ Vn) happens in
discrete time steps. At each time step, at most one package can travel over each edge.
If a package travels over an edge, it arrives at the end of the edge at the end of the
time step. Every package ai follows its path P (i). When a package wants to travel
over an edge, then it enters a FIFO queue at the start of the edge (it two packages
arive at the same time, their order is arbitrary). If the new package is the only package
in the queue, then it can use the edge immediately. Otherwise, the first package in
the queue travels over the edge, while the other packages in the queue wait. In the
following example, we see conflicting paths for two packages. It takes four times steps
until these two packages arrive.
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Let |P (i)| be the number of edges on P (i). Then a package ai needs at least |P (i)|
steps to reach π(i), but it might need considerably more steps if it is delayed. The
execution time of a routing is the time that it takes until all packages have arrived at
their destination. We want to minimize the execution time.

We look for an oblivious routing strategy. That means that the path P (i) may depend
only on i and π(i) and is not influenced by the destinations of other packages. Thus,
the problem is to avoid that many packages choose the same path, but with a strategy
that computes the path only based on start and end vertex (and possibly on random
decision making).

Bit fixing paths. Bit fixing is a deterministic oblivious routing strategy for the
hypercube. It “fixes” the bits in bin(i) from left to right (i.e. starting at the most
significant bit) such that the number i becomes π(i). For example, if the package a5
wants to travel from 5 to 2 in H3, then the bit fixing path travels through the vertices
with the binary representations 101, 001, 011 and 010 in this order. The bit fixing
path from 6 to 1 visits the vertices with the binary representations 110, 010, 000, 001
in this order, and the path from 0 to 5 visits 000, 100 and 101.
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In general, let x1 . . . xn be the binary representation of i and let y1 . . . yn be the bi-
nary representation of π(i). The bit fixing path P (i) has h(bin(i), bin(π(i))) edges.
Let `m for m ∈ {0, . . . , h(bin(i), bin(π(i)))} be the index of the mth bit in which
bin(i) and bin(π(i)) differ. Then the mth edge on P (i) goes from the vertex with
binary representation y1 . . . y`m−1x`m . . . xn to the vertex with binary representation
y1 . . . y`m−1y`mx`m+1 . . . xn. Notice that this is well-defined: Only one bit changes, so
two consecutive vertices on P (i) are indeed always connected in Hn. Furthermore,
the path P (i) indeed starts in i and ends in π(i). Finally, observe that |P (i)| =
h(bin(i), bin(π(i))| ≤ n and that a bit fixing path is always a shortest path between i
and π(i). The latter holds because every edge in En connects two vertices with Ham-
ming distance one, so any path between i and π(i) has at least h(bin(i), bin(π(i))
edges.

Collisions and large worst case execution times. In our above example, the
three bit fixing paths do not intersect. However, consider the following family of
instances. Let n be a positive even integer. For any i ∈ {0, . . . , 2n− 1}, we define π(i)
in the following way. Let x1 . . . xn be the binary representation of i. Then π(i) is in
binary given by

xn
2 +1 . . . xnx1 . . . xn2 ,
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i.e. the first and second part of the binary representation are swapped. The problem is
that for all i with the same last n/2 bits, the bit fixing paths for this instance intersect
in a vertex. Let zn

2 +1 . . . zn be n/2 bits and let the binary representation of i be

x1 . . . xn2 z
n
2 +1 . . . zn.

Then π(i) has the binary representation

zn
2 +1 . . . znx1 . . . xn2 ,

and the bit fixing path from i to π(i) contains the vertex with the binary representation

zn
2 +1 . . . znzn2 +1 . . . zn.

There are 2n/2 numbers in {0, . . . , 2n − 1} with zn
2 +1...zn as the last n/2 bits of their

binary representation. All these numbers have the same vertex i∗ in their bit fixing
path. One of them is the number i∗ itself, which has i∗ as destination, but all 2n/2− 1
other numbers want to leave i∗ again. In every time step, at most n packages can leave
i∗. Thus, it takes at least (2n/2− 1)/n steps until all packages have left i∗, and that is
a lower bound for the execution time of the whole routing strategy. Thus, the worst
case execution time is Ω(

√
2n/n) for the routing strategy that uses bit fixing paths for

all packages. Surprisingly, this is true for any oblivious deterministic routing strategy.

Theorem 3.13 (Kaklamanis, Krizanc, Tsantilas [KKT91]). For any oblivious deter-
ministic routing strategy in Hn, there exists a permutation π : Vn → Vn such that the
execution time of the routing strategy is Ω(

√
2n/n) for π.

The paper [KKT91] also contains a deterministic routing strategy that matches this
worst case execution time. In light of the routing time n of a single package, we would
like a faster strategy. Randomization will provide us with a way out.

Valiant’s randomized routing strategy. The following strategy is attributed to
Valiant and is published in [VB81, Val82]. While there exist permutations for which
bit fixing paths have a lot of collisions, this is not the case if the permutation is chosen
randomly (we do not prove this statement, but it is implicit in the proof that we
will see). However, we do not want to force the input to be random, we want the
algorithm to be randomized. Valiant’s idea is to send each package ai to π(i) in two
phases: First, the package is sent to a random intermediate location δ(i). Second, it is
sent from δ(i) to π(i). In this way, each phase has a random component: Packages are
either sent to or from a random location. With high probability, bit fixing routings
will be fast for both phases.

The intermediate location δ(i) is chosen uniformly at random from all Vn for all i ∈ Vn.
Thus, δ is not necessarily a permutation and packages might be routed to the same
intermediate location. However, the number of packages routed to the same location
will with high probability not be large enough to cause high congestion in the graph.
To make the two phases of the algorithm independent, we assume that all packages
wait until step 4n + 1 until they start with phase 2. We will see that with high
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probability, phase 1 is completed in 4n time steps. Phase 2 then takes at most 4n
more time steps with high probability. The remaining part of this section consists of
proving the following theorem.

Theorem 3.14. For any π : Vn → Vn, Valiant’s randomized routing strategy has an
execution time of at most 8n steps with probability 1− 1

2n .

Before proving the theorem, we develop structural insights about bit fixing paths. For
any i ∈ Vn let P (i) be the big fixing path from i to δ(i) during phase 1, i.e. P (i) is a
bit fixing path to a location chosen uniformly at random from Vn. By |P (i)| we mean
the number of edges on P (i), and by P (i)∩P (j) for i, j ∈ Vn we mean the set of edges
that are on both paths. We define the set

S(i) = {j | j 6= i, P (i) ∩ P (j) 6= ∅}

which is the set of all vertices j such that the bit fixing path of aj crosses the path of
ai. The packages aj, j ∈ S(i) are all the packages that can possibly delay ai when it
travels to δ(i). We investigate how and how often a package aj, j ∈ S(i) can delay ai.
The following lemma shows that two bit fixing paths can only cross in one contiguous
subpath.

Lemma 3.15. For all i ∈ Vn and all j ∈ S(i), P (i)∩ P (j) is a contiguous subpath of
P (i) and P (j), respectively.

Proof. Let i′ be the last vertex of the first subpath of P (i) that also lies on P (j). We
want to show that i′ is the last vertex on P (i) and P (j), respectively, that lies on both
paths. Let e and e′ be the edges of P (i) and P (j), respectively, that leave i’.

P (i)

P (j)

i′
e

e′

Then e and e′ flip different bits in the binary representation of i′. Let

bin(i′) = x1 . . . xs . . . xt . . . xn

where xs and xt are the bits that are inverted, i.e. e goes to the vertex with binary
representation

x1 . . . x̄s . . . xt . . . xn

and e′ goes to the vertex with binary representation

x1 . . . xs . . . x̄t . . . xn

or vice versa. Then all future nodes on P (i) and P (j) differ in the sth bit, thus the
paths cannot cross again.
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We learned that a package aj, j ∈ S(i) might delay ai during one contiguous subpath,
but once P (i) and P (j) diverge for the first time, aj can no longer delay ai. We use
this fact to prove the following statement.

Lemma 3.16. Let T (i) be the number of steps that ai needs to arrive at δ(i) and
define the delay of ai by D(i) = T (i)− |P (i)|. Then it holds

D(i) ≤ |S(i)|

for all i ∈ Vn.

Proof. The package ai waits D(i) steps because it is delayed by other packages, i.e. its
delay goes from 0 to D(i) in steps of one. We would like to charge a distinct package
in S(i) for the increase from L to L+1 for all L ∈ {0, . . . , D(i)}. The package that we
charge is not necessarily the package that caused the delay for ai. It is only important
that no package in S(i) gets charged twice.
In the following example, a1 wants to travel to the rightmost vertex, the destinations
of all other packages lie beyond this vertex. We assume that the FIFO queue breaks
ties by sending the package with the higher index first. Even though P (1) has only
five edges, a1 needs nine steps to reach its destination. It is always delayed by the
same package a2. However, the delay is still bounded by the number of crossing paths,
since P (1) is crossed by P (2), P (3), P (4) and P (5).
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P (2)
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a3

P (4)
a4
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Let P (i) consist of the edges e1, . . . , e|P (i| (in this order) and of the vertices v1, . . . , v|P (i)|+1
(in this order). We define the offset of a package aj with j ∈ S(i) ∪ {i} at time t as

offset(t, j) = t−m

iff aj is at vertex vm at time t (if aj is not on P (i) at time t, then the offset is undefined
or some distinguished number like −1). Thus, the offset says whether aj is ahead or
behind ai’s schedule. In particular, offset(t, i) is the delay of ai at the beginning of
step t. The package ai can only be delayed by packages with the same offset because
only these packages are at the same vertex and potentially want to travel over the
same edge as ai.

In our example above, i = 1 and the upper path is P (i) = P (1) = (v1, . . . , v6). We
see that a1 is at v1 at the beginning of step 1 and travels to v2 in the first time step.
Thus, offset(1, 1) = 0 and offset(2, 1) = 0. Then it waits a time step because the edge
(v2, v3) is blocked. Thus, offset(3, 1) = 1. In step 3, a1 travels to v3, thus it is at v3 at
the beginning of step 4 and offset(4, 1) = 1. Now it is delayed again, it is still at v3 at
the beginning of step 5, implying that offset(5, 1) = 2. For a1, the offset is the delay.
Now consider a2. It arrives on P (1) after one time step and is at v2 at the beginning
of the second time step, i.e. offset(2, 2) = 0. Also offset(3, 2) = 0 because a2 travels in
step 2. However, then it waits, implying that offset(4, 2) = 1 because a2 is still at v3
at the beginning of step 4. We see that a1 is delayed twice by a2 when both have the
same offset: At time 2, both have offset 0, and at time 4, both have offset 1.

Observe that for a given offset L, a package with offset(t, L) is at vertex vt−L at time
t. If the increase in ai’s delay from L to L+ 1 happens at time t, then this happened
because of a package which is also at vertex vt−L at time t and wants to travel over
the edge et−L. Now we define

lucky(t, L) = {j | j ∈ S(i), aj travels et−L in step t}
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for all L ∈ {0, . . . , D(i) − 1} and for all t ∈ {1 + L, . . . , |P (i)| + L − 1} as the
lucky package with offset L that actually travels over et−L in step t. Observe that
lucky(t, L) either contains no or exactly one index. In our example, lucky(1, 0) =
{1}, lucky(2, 0) = {2}, lucky(3, 0) = {3}, lucky(4, 0) = {4}, lucky(5, 0) = {5}
and lucky(6, 0) is not defined because there is no edge e6. For offset 1, we ob-
serve lucky(2, 1) = ∅, lucky(3, 1) = {1}, lucky(4, 1) = {2}, lucky(5, 1) = {3} and
lucky(6, 1) = {4} in the example.

Assume that the increase of ai’s delay from L to L + 1 happens in step t. Thus,
lucky(t, L) is nonempty because another package caused ai to wait during step t. Now
let t′ be the largest t′′ ∈ {1 +L, . . . , |P (i)|+L−1} such that lucky(t′′, L) is nonempty.
We charge the increase of a′is delay from L to L+ 1 to the aj with j ∈ lucky(t′, L). In
the example, we charge the increase from 0 to 1 to a5 because it is the last package
that travels at offset 0. The increase from 1 to 2 is charged to a4 and so on.

Assume that a package aj, j ∈ S(i) gets charged twice by this process, once for in-
creasing the delay from L1 to L1 + 1 and once for increasing it from L2 to L2 + 1. By
definition, j ∈ lucky(t′1, L1) and j ∈ lucky(t′2, L1) for t′1, t′2 ∈ {1+L, . . . , |P (i)|+L−1}.
Without loss of generality, assume that t′1 < t′2. Since t′1 + 1 ≤ t′2 ≤ |P (i)| + L − 1,
lucky(t′1 + 1, L1) is well-defined and it is empty by definition of t′1. Observe that j has
not reached the end of P (i) at time t′1 because it was still on P (i) at time t′2 > t′1.
However, it did not travel on the next edge, since otherwise, lucky(t′1 + 1, L1) would
not be empty. It cannot have been blocked by another package either, because this
package then would be in lucky(t′1 + 1, L1) (notice that packages that are not in S(i)
will never travel edges of P (i) and can thus not block aj from advancing on P (i)).
Thus, aj did not want to travel the next edge. It either arrived at its destination at
time t′1 or its path deviated from P (i). If it arrived at its destination, then j cannot
be in lucky(t′2, L2) because aj stopped moving at time t′1. If P (j) deviated from P (i),
then by Lemma 3.15, P (j) never joins P (i) again. Thus, j cannot be in lucky(t′2, L2)
in this case either. We conclude that aj cannot be charged twice.

Since no j ∈ S(i) can be charged twice, we proved that D(i) ≤ |S(i)|.
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