Online Motion Planning MA-INF 1314 Searching in streets!

Elmar Langetepe University of Bonn

Rep: Summary searching for rays

- The Window-Shopper-Problem
- Optimal strategy C = 1.059...: **Theorem**
- Interesting design technique
- Rays in general
- Lower $C \ge 2\pi e = 17.079...$ (**Theorem**) and upper bound $C=22.51\ldots$ (Theorem)
- Lower bound construction
- Also a lower bound for special case with $C=17.289\ldots$

Rep.: Lower bound construction, special rays

ullet Find s on a ray visited up to $\beta_k x_k$ at the last time, now at

 x_{J_k}

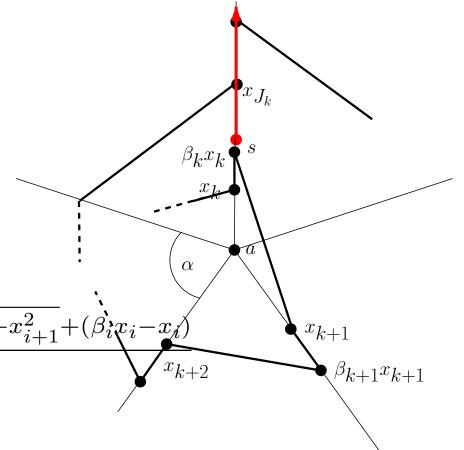
Note: Any order is possible

• Worst-case, s close to $\beta_k x_k$

• Ratio: C(S)

$$\frac{\sum_{i=1}^{J_k-1} \sqrt{(\beta_i x_i)^2 - 2\beta_i x_i x_{i+1} \cos \gamma_{i,i+1} + x_{i+1}^2 + (\beta_i x_i - x_i)}{\beta_k x_k}$$
Monotone / Poriodic

 Monotone/Periodic, Functional??



Rep.: Lower bound construction, special rays

• Ratio: C(S)

$$\frac{\sum_{i=1}^{J_k-1} \sqrt{(\beta_i x_i)^2 - 2\beta_i x_i x_{i+1} \cos \gamma_{i,i+1} + x_{i+1}^2} + (\beta_i x_i - x_i)}{\beta_k x_k} x_{J_k}$$

• Shortest distance to next ray:

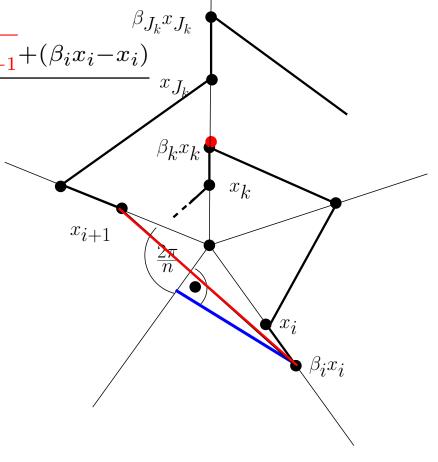
$$\beta_i x_i \sin \frac{2\pi}{n}$$

Lower bound for

$$\sqrt{(\beta_i x_i)^2 - 2\beta_i x_i x_{i+1} \cos \gamma_{i,i+1} + x_{i+1}^2}$$

• Lower bound: $C(S) \ge$

$$\sin\frac{2\pi}{n} \frac{\sum_{i=1}^{J_k - 1} \beta_i x_i}{\beta_k x_k}$$

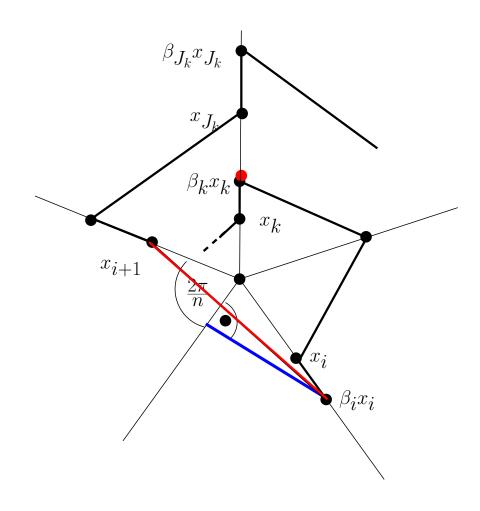


Rep.: Lower bound construction

- Lower bound $\frac{\sum_{i=1}^{J_k-1} f_i}{f_i}$
- Equals functional of standard m-ray search
- Optimal strategy: monotone/periodic (Alpern/Gal)
- $f_i = \left(\frac{n}{n-1}\right)^i$,

ratio:
$$(n-1)\left(\frac{n}{n-1}\right)^n$$

• $C(S) \ge \sin \frac{2\pi}{n} (n-1) \left(\frac{n}{n-1}\right)^n$

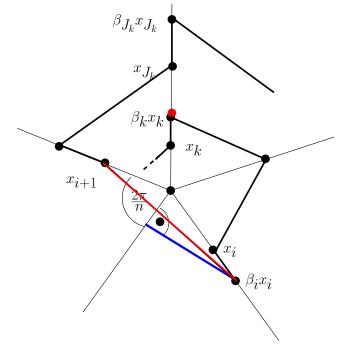


Rep.: Lower bound construction

•
$$C(S) \ge \sin \frac{2\pi}{n} (n-1) \left(\frac{n}{n-1}\right)^n$$

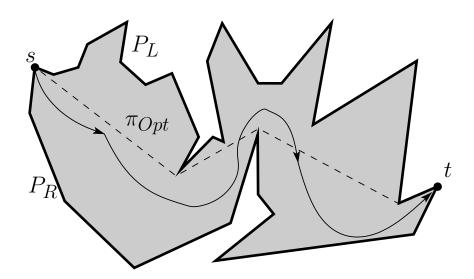
$$\lim_{n \to \infty} (n-1) \left(\frac{n}{n-1}\right)^n \sin \frac{2\pi}{n} = 2\pi e = 17.079\dots$$

ower bound: **Theorem**



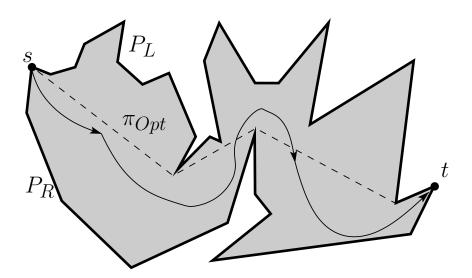
Searching in street polygons

- Searching in simple ploygons, visibility
- Subclass: Streets
- Start- and target
- Target t unknown, search for t!
- Compare to shortest path to t! Comp. factor!!!



Formal definition

Def. Let P be a simple polygon with t and s on the boundary of P. Let P_L und P_R denote the left and right boundary chain from s to t. P is denoted as a *street*, if P_L and P_R are *weakly visible*, i.e., for any point $p \in P_L$ there is at least one point $q \in P_R$ that is visible, and vice versa.

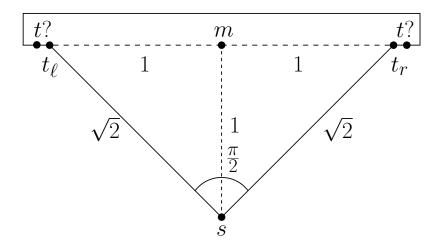


Lower Bound

Theorem No strategy can achieve a path length smaller than

$$\sqrt{2} \times \pi_{\text{Opt}}$$

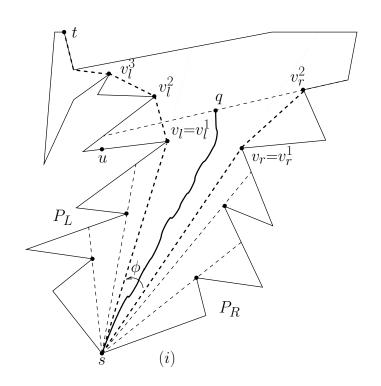
Proof: |

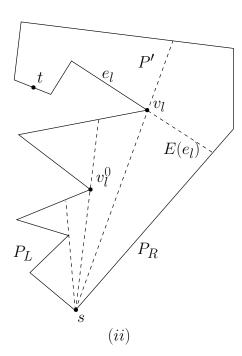


Detour with ratio $\sqrt{2}$

Reasonable movements: Struktural property!

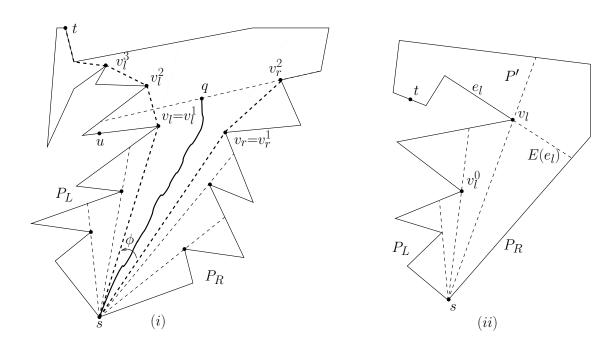
- Inner wedge is important: Between ...
- ▶ Rightmost left reflex vertex, leftmost right reflex vertex
- By contradiction: Assume that the goal is not there! No street!





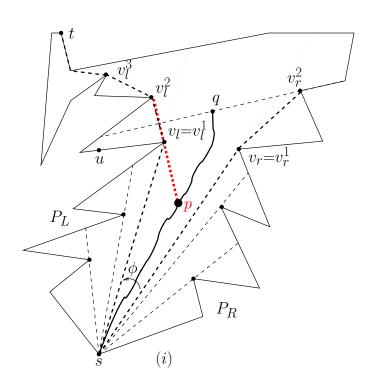
Reasonable strategies

- ullet Always into wedge of c, v_l and v_r
- Goal visible, move directly toward it
- Cave behind v_{ℓ} or v_r fully visible, no target as for q (v_{ℓ} or v_r vanishes), agent moves directly to the opposite vertex



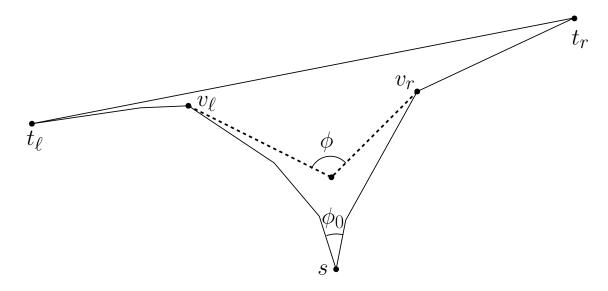
Reasonable strategies

- ullet Always into wedge of c, v_l and v_r
- Another vertex (for example) v_{ℓ}^2 appears behind v_{ℓ} . Change to the wedge c, v_{l}^2 and v_{r} .



Funnel situation!

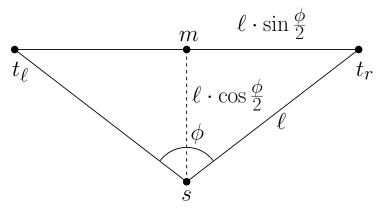
- It is sufficient to consider special streets only!
- Combine them piecewise!
- **Def.** A polygon that start with a convex vertex s and consists of two opening convex chains ending at t_{ℓ} and t_r respectively and which are finally connected by a line segment $\overline{t_{\ell}t_r}$ is called a funnel (polygon).



Generalized Lower Bound

Lemma For a funnel with opening angle $\phi \leq \pi$ no strategy can guarantee a path length smaller than $K_{\phi} \cdot |Opt|$ where

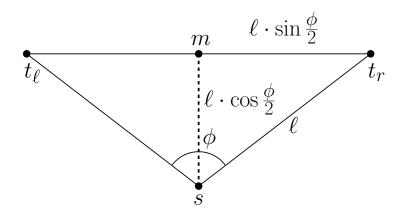
$$K_{\phi} := \sqrt{1 + \sin \phi}$$
. Proof:



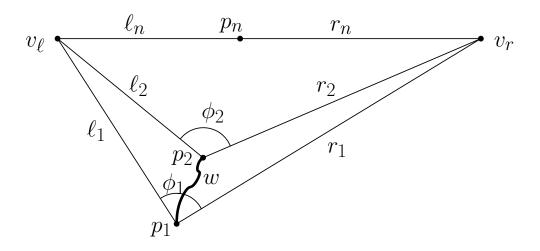
Detour at least:
$$\frac{|\pi_S|}{|\pi_{Opt}|} = \frac{\ell\cos\frac{\phi}{2} + \ell\sin\frac{\phi}{2}}{\ell} = \sqrt{1 + \sin\phi}$$
.

Opt. strat. opening angle $0 \le \varphi_0 \le \pi!$

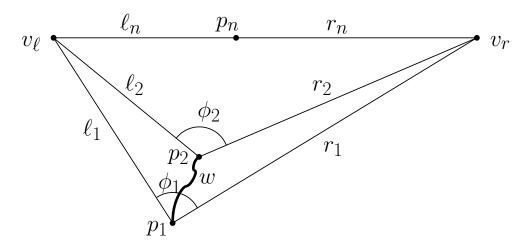
- $K_{\phi} := \sqrt{1 + \sin \phi}$.
- Strongly increasing: $0 \le \phi \le \pi/2$, Interval $[1, \sqrt{2}]$
- Strongly decreasing: $\pi/2 \le \phi \le \pi$, Interval $[\sqrt{2}, 1]$
- Subdivide: Strategy up to $\phi_0 = \pi/2$, Strategy from $\phi_0 = \pi/2$
- Here: Start from s with angle $\phi_0 \geq \pi/2$.
- Remaining case: Exercise!



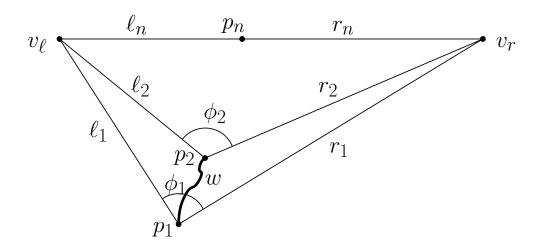
- ullet Backward analysis: For $\varphi_n := \pi$ optimal strategy.
- ullet $K_\pi=1$ and K_π -competitive opt. strategy with path l_n or $r_n!$
- Assumption: Opt. strategy for some ϕ_2 with factor K_{ϕ_2} ex.
- How to prolong for ϕ_1 with factor K_{ϕ_1} where $\frac{\pi}{2} \leq \phi_1 < \phi_2$?
- We have $K_{\phi_1} > K_{\phi_2}$



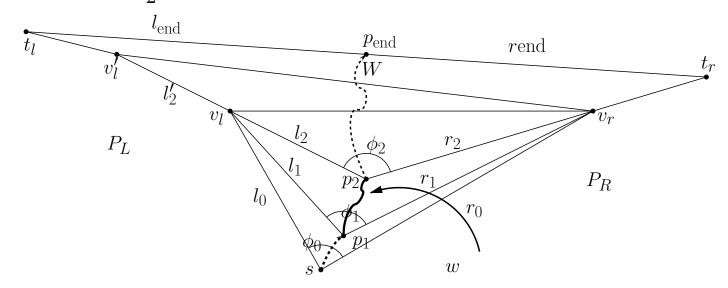
- Situation: Opt. strategy for ϕ_2 with ratio K_{ϕ_2}
- How to get opt. strategy for K_{ϕ_1} ?
- Conditions for the path w? Design!
- ullet Goal behing v_l , path: $|w| + K_{\phi_2} \cdot \ell_2$, optimal: l_1
- ullet Goal behind v_r , path: $|w| + K_{\phi_2} \cdot r_2$, optimal: r_1
- \bullet Means: $\frac{|w|+K_{\phi_2}\cdot\ell_2}{l_1}\leq K_{\phi_1}$ and $\frac{|w|+K_{\phi_2}\cdot r_2}{r_1}\leq K_{\phi_1}$



- Guarantee: $\frac{|w|+K_{\phi_2}\cdot\ell_2}{l_1}\leq K_{\phi_1}$ and $\frac{|w|+K_{\phi_2}\cdot r_2}{r_1}\leq K_{\phi_1}$
- ullet Combine, single condition for w
- $|w| \le \min\{ K_{\phi_1} \ell_1 K_{\phi_2} \ell_2 , K_{\phi_1} r_1 K_{\phi_2} r_2 \}$
- Change of a vertex at p_2 ? Remains guilty!



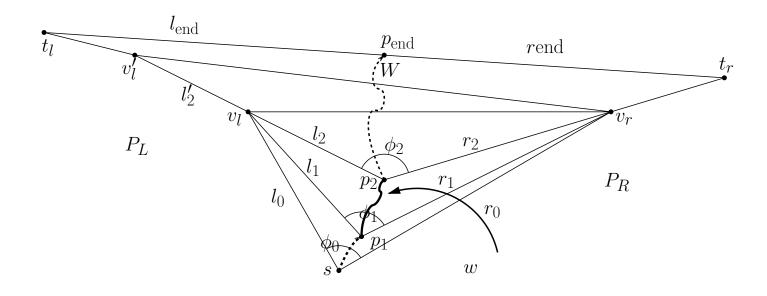
- Change left hand: Condition
- $|w| \le \min\{ K_{\phi_1} \ell_1 K_{\phi_2} \ell_2 , K_{\phi_1} r_1 K_{\phi_2} r_2 \} \blacksquare$
- There is opt. strategy for ϕ_2
- Show: $\frac{|w| + K_{\phi_2} \cdot (\ell_2 + \ell_2')}{(l_1 + \ell_2')} \le K_{\phi_1}$



$$|w| \leq K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2$$

$$= K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2 + K_{\phi_2} \ell'_2 - K_{\phi_2} \ell'_2$$

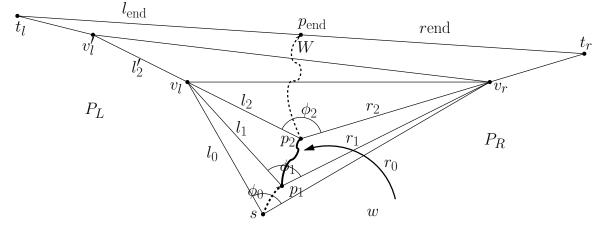
$$\leq K_{\phi_1} (\ell_1 + \ell'_2) - K_{\phi_2} (\ell_2 + \ell'_2)$$



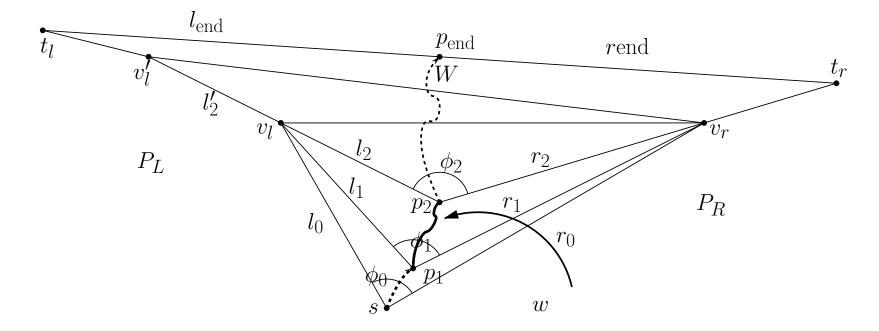
Lemma Let S be a strategy for funnels with opening angles $\phi_2 \geq \frac{\pi}{2}$ and competitive ratio K_{ϕ_2} . We can extend this strategy to a strategy with ratio K_{ϕ_1} for funnels with opening angles ϕ_1 where $\phi_2 > \phi_1 \geq \frac{\pi}{2}$, if we guarantee

$$|w| \le \min\{ K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2 , K_{\phi_1} r_1 - K_{\phi_2} r_2 \}$$

for the path w from p_1 (opening angle ϕ_1) to p_2 (opening angle ϕ_2).



- If $|w| \leq \min\{ K_{\phi_1}\ell_1 K_{\phi_2}\ell_2 \;,\; K_{\phi_1}r_1 K_{\phi_2}r_2 \}$ holds, then
- $|W| \le \min\{ K_{\phi_0} \cdot |P_L| K_{\pi} \ell_{\text{End}}, K_{\phi_0} \cdot |P_R| K_{\pi} r_{\text{End}} \}$.

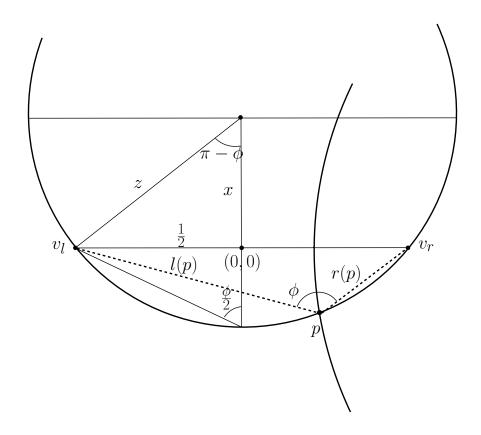


- $|w| \le \min\{ K_{\phi_1} \ell_1 K_{\phi_2} \ell_2 , K_{\phi_1} r_1 K_{\phi_2} r_2 \}$
- Equality for both sides: $K_{\phi_2}(\ell_2-r_2)=K_{\phi_1}(\ell_1-r_1)$
- Good choice for both sides!
- Defines a curve!
- We start with $A = K_{\phi_0}(\ell_0 r_0)$
- Parametrisation!

$$A = K_{\phi_0}(\ell_0 - r_0)$$

• Hyperbola: $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$, l - r = 2a, 2c, $a^2 + b^2 = c^2$

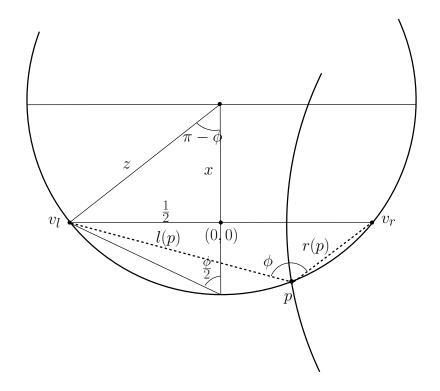
• Circle: $X^2 + (Y - x)^2 = z^2$, r = z, (0, x)



Intersection with circle and hyperbola

• Hyperbola:
$$\frac{X^2}{\left(\frac{A}{2K_{\phi}}\right)^2} - \frac{Y^2}{\left(\frac{1}{2}\right)^2 - \left(\frac{A}{2K_{\phi}}\right)^2} = 1$$
• Circle:
$$X^2 + \left(Y + \frac{\cot\phi}{2}\right)^2 = \frac{1}{4\sin^2\phi}$$

• Circle:
$$X^2 + \left(Y + \frac{\cot \phi}{2}\right)^2 = \frac{1}{4\sin^2 \phi}$$



Intersection: Verification by insertion!

 $X(\phi) = \frac{A}{2} \cdot \frac{\cot \frac{\phi}{2}}{1 + \sin \phi} \cdot \sqrt{\left(1 + \tan \frac{\phi}{2}\right)^2 - A^2}$ $Y(\phi) = \frac{1}{2} \cdot \cot \frac{\phi}{2} \cdot \left(\frac{A^2}{1 + \sin \phi} - 1\right)$

where $A=K_{\phi_0}(\ell_0-r_0)$

