Online Motion Planning MA-INF 1314 **Application Search Path Approx.!**

Elmar Langetepe University of Bonn

Rep.: Search Path Approx. Applications (vision)!

- Simple polygon, Offline: SWR ($C_{\beta} = 1 = \beta$) \Rightarrow 8-Approximation
- Rectilinear Polygons, Online: Greedy-Online $(C_{\beta} = \sqrt{2}, \beta = 1)$ $\Rightarrow 8\sqrt{2}$ -Approximation
- Simple Polygons, Offline: Polytime Alg. $(C_{\beta} = 1, \beta = 1)$ \Rightarrow 8-Approximation
- Simple Polygons, Online: PolyExplore $(C_{\beta} = 26, \beta = 1)$ \Rightarrow 212-Approximation

Consider exploration task! Full and depth restricted!

Rep.: SWR (Rect. polygon) offline depth restriction

- Ignore cuts with distance > d, Shortest path to cut
- Ignore a cut here, optimal algorithm
- $\operatorname{Expl}(d) = \operatorname{Expl}_{\operatorname{OPT}}(d)$
- **Theorem**: 8 Approximation of optimal search path!

Rep.: Rectilinear polygons Online

- Assume, s boundary point
- Greedy! Scan the boundary up to the first invisible point. Move
- to the cut on the shortest path!
- Shortest L_1 -path to the cut, online!
- Algorithmus Always approach the next reflex vertex along the boundary that blocks the visibility.

Rep.: L_1 -opt./ $\sqrt{2}$ -competitive! Theorem

- $\sqrt{2}$ -competitive
- Depth restrictable!
- Online: Ignore Cuts with distance > d
- $\operatorname{Expl}_{\operatorname{ONL}}(d) \leq \sqrt{2} \operatorname{Expl}_{\operatorname{OPT}}(d)$
- **Theorem**: $8\sqrt{2}$ -Approximation

SWR (General case): Offline!

- Corner problem!!
- Sequence of essential cuts, successive cuts
- Not visited by order along boundary.
- But the corresponding $P_{c_i}!!!$

Touring a sequence of polygons (TPP)

- Sequence of convex polygons
- Start s, target tl
- Visit polygons w.r.t. sequence, shortest path

TPP

- Simple version:
- $O(nk\log\frac{n}{k})$
- Build(Query): $O(nk \log \frac{n}{k})$
- Compl.: O(n)
- Query (fixed s): $O(k \log \frac{n}{k})$

- General version:
- Fences, convex boundary, etc.
- $\bullet \ O(nk^2 \log n)$
- Build(Query): $O(nk^2 \log n)$
- Compl.: O(nk)
- Query (fixed s): $O(k \log n + m)$

Results from: Dror, Efrat, Lubiw, Mitchell 2003!!

Application: SWR

Essential parts!

Use the order along the boundary! One common fence, intersections!

Start and target identical!

- $O(n^4)$ '91
- $O(n^4)$ Tan et al. '99
- $O(n^3 \log n)$ by this result!
- Theorem

Application: General simple polygons Offline

- Compute optimal exploration tour
- ullet Agent with vision, start s at the boundary
- Depth restriction: Ignore cuts with distance > d
- $\operatorname{Expl}(d) = \operatorname{Expl}_{\operatorname{OPT}}(d)$
- Theorem: 8 Approximation, Online 212 (postponed)

Remark: Depth restriction Offline

- P(d) subset of P
- $\operatorname{Expl}(d) = \operatorname{Expl}_{\operatorname{OPT}}(d)$ can leave P(d)

Vision: Negative result, polygon with holes

- Much more difficult
- Example: See boundary ⇔ see everything
- Not true for such scenes
- Offline: Computation SWR is NP-hart, reduction idea TSP

Polygons with holes

There is no constant online approximation of the optimal search ratio

Theorem Let A be an online strategy for the exploration of a polygon with n obstacles (holes), we have: $|\Pi_A| \ge \sqrt{n} |\Pi_{OPT}|$

Proof: LB by examples!

Polygon with holes: $|\Pi_A| \geq \sqrt{n} |\Pi_{OPT}|$

- $W_1 = 2k$, $H_1 = k$, k spikes, (k-1) bases, (2k-1)k rectangles
- $H_i = \frac{H_1}{(2k)^{i-1}}$, $W_i = 2k i + 1 \ge k$, $i = 1, \dots, k$
- Situation H_i : Online strategy does not know position of block H_{i+1}

- Recursively
- Left side: Look behind any block
- Right side: Move once upwards
- Adversary: Find block after $\Omega(k)$ steps
- ullet Altogether: $\Omega(k \times k)$ for any strategy

Polygons with holes: $|\Pi_A| \geq \sqrt{n} |\Pi_{OPT}|$

- Optimal strategy: Move directly to the block
- Go on recursively, at the end move along any block.
- $|\Pi_{OPT}| \approx 2W_1 + 2k < 7k$
- $k = |\sqrt{n}|$ gives the result

Polygons with holes Corollary

- No O(1)-competitive exploration for such environments $(\Omega(\sqrt{n}))$
- Optimal exploration has a bad Search Ratio
- Trick: Extension
- Then: Optimal exploration has Search Ratio O(1)
- Any online strategy has Search Ratio $\Omega(k)$

Summary

- Connection between exploration and search:
- \exists constant-competitive, depth-restrictable exploration strategy $\Rightarrow \exists$ search strategy with competitive Search Ratio
- | constant-competitive exploration strategy,

 | but ∃ 'extendable' lower bound

 | ⇒ ∄ search strategy with competitive Search Ratio

Online exploration arbitrary polygon

- Essential cuts, appearance order along the boundary
- Not competitive
- Sudivision: Right and left reflex vertices

Online exploration arbitrary polgons

- Explore a single vertex
- Looking around a corner
- Simple strat. and analysis: Arc of a circle

Looking around a corner, Theorem

• $H(\varphi)=\varphi$, monotonically increasing: Maximum at $\varphi=\frac{\pi}{2}$

•
$$G(\varphi) = \frac{\varphi}{\sin \varphi}$$
, $G'(\varphi) = \frac{\sin \varphi - \varphi \cos \varphi}{\sin^2 \varphi}$

- ullet Optimize: $G'(\varphi)>0$ für $\varphi\in(0,\pi/2]$, Max. at $\varphi=\frac{\pi}{2}$
- ullet Ratio: $\frac{\pi}{2}$ since perimeter is $\pi \times D$

Looking around a corner: Lower bound!

- Special case!
- ullet To the left or right of X!
- In any case! At least $\frac{2}{3}\sqrt{3}$, Blackboard! **Theorem**
- Optimal path: Ratio 1.212. . . Theorem

