Online Motion Planning MA-INF 1314

Summersemester 17
 Escape Paths

Elmar Langetepe
University of Bonn
Juli 11th, 2017

Escape Path situation

- Try to escape from an partially unknown environment
- The adversary manipulates the environment
- Leave the area as soon as possible
- Lost in a forest Bellman 1956
- Escape paths for known region R
- Single deterministic path
- Leave area from any starting point
- Adversary translates and rotates R
- Minimize the length of successful path
- Geometric argumentations
- Only known for few shapes

Simple examples

Obviously: The diameter of any region R is always an escape path!
Theorem: The shortest escape path for a circle of radius r is a line segment of length $2 r$.

Proof: Assume there is a better escape path! Contradiction!

Also for semicircles

Theorem: The shortest escape path for a semicircle of radius r is a line segment of length $2 r$.

Proof: Assume there is a better escape path! Contradiction!

More generally for a rhombus with angle 60°

Theorem: The shortest escape path for a rhombus of diameter L with angle $\alpha=60^{\circ}$ is a line segment of length L.

Proof: Assume there is a better escape path! Contradiction!

Definition: Fatness w.r.t. diameter! Rhombus-Fat!
Corollary: The shortest escape path for rhombus-fat convex set of diameter L is a line segment of length L.

Proof: Assume there is a better escape path! Contradiction!

Convex = diameter?

- Equilateral triangle: Besicovitch
- Zig-Zag escape path with length ≈ 0.9812
- More generally from Coulton and Movshovich (2006)
- Isosceles triangle for α and b_{α}
- b_{α} is diameter!

Convex = diameter?

- Construct symmetric Zig-Zag path of small length
- Asssume length 1.

Convex = diameter?

- Extract triangle
- $\frac{1}{x}=\frac{b_{\alpha}}{1} x=\frac{1}{b_{\alpha}}$

Convex = diameter?

Finally we determine b_{α} :
$y=\tan \alpha\left(b_{\alpha}-\frac{1}{b_{\alpha}}\right)$ and $x=\frac{1}{b_{\alpha}}$ and $x^{2}+(3 y)^{2}=1$ which gives

$$
b_{\alpha}=\sqrt{1+\frac{1}{9 \tan ^{2} \alpha}} .
$$

There should be no better Zig-Zag path for T_{α} ! Line $L_{3}: Y=\tan (2 \alpha)$ runs in parallel with L_{2}. This means $-3 \tan \alpha=\tan 2 \alpha$ or $\tan \alpha=\sqrt{\frac{5}{3}}$.

Besicovitch triangles

Theorem: For any $\alpha \in\left[\arctan \left(\sqrt{\frac{5}{3}}\right), 60^{\circ}\right]$ there is a symmetric Zig-Zag path of lenght 1 that is an escape path of T_{α} smaller than the diameter b_{α}.

- $b_{\alpha}=\sqrt{1+\frac{1}{9 \tan ^{2} \alpha}}$
- $\alpha=60^{\circ}: b_{\alpha}=\sqrt{\frac{28}{27}}$
- $b_{\alpha}:=1 \Longrightarrow \sqrt{\frac{27}{28}}<1$ is Zig-Zag path length
- Optimality? Yes!

Different performance measures

- Set L_{m} of m line segments s_{i} of unknown length $\left|s_{i}\right|$
- Dark corridors, escape, digging for oil
- Test corridors successively
- $s_{j_{1}}$ up to a certain distance x_{1}, then $s_{j_{2}}$ for another distance x_{2} and so on

More information

- Assume distribution is known!
- $f_{1} \geq f_{2} \geq \cdots \geq f_{m}$ order of the length given
- Extreme cases! Good strategies!

More information

- $f_{1} \geq f_{2} \geq \cdots \geq f_{m}$ order of the length given
- Check i arbitrary segments with length f_{i} : $\min _{i} i \cdot f_{i}$ is the best strategy

