Online Motion Planning MA-INF 1314

Summersemester 17 Escape Paths

Elmar Langetepe

University of Bonn

Juli 11th, 2017

Escape Path situation

- Try to escape from an partially unknown environment
- The adversary manipulates the environment
- Leave the area as soon as possible
- Lost in a forest Bellman 1956
- Escape paths for known region R
- Single deterministic path
- Leave area from any starting point
- Adversary translates and rotates R
- Minimize the length of successful path
- Geometric argumentations
- Only known for few shapes

Simple examples

Obviously: The diameter of any region R is always an escape path!

Theorem: The shortest escape path for a circle of radius r is a line segment of length 2r.

Also for semicircles

Theorem: The shortest escape path for a semicircle of radius r is a line segment of length 2r.

More generally for a rhombus with angle 60°

Theorem: The shortest escape path for a rhombus of diameter L with angle $\alpha=60^\circ$ is a line segment of length L.

Fatness definition!

Definition: Fatness w.r.t. diameter! Rhombus-Fat!

Corollary: The shortest escape path for rhombus-fat convex set of diameter L is a line segment of length L.

- Equilateral triangle: Besicovitch
- Zig-Zag escape path with length ≈ 0.9812
- More generally from Coulton and Movshovich (2006)
- Isosceles triangle for α and b_{α}
- b_{α} is diameter!

i)

- Construct symmetric Zig-Zag path of small length
- Asssume length 1.

- Extract triangle
- $\bullet \ \frac{1}{x} = \frac{b_{\alpha}}{1} \ x = \frac{1}{b_{\alpha}}$

i)

Finally we determine b_{α} :

$$y=\tan lpha \left(b_lpha-rac{1}{b_lpha}
ight)$$
 and $x=rac{1}{b_lpha}$ and $x^2+(3y)^2=1$ which gives

$$b_{\alpha} = \sqrt{1 + \frac{1}{9 \tan^2 \alpha}}.$$

$$L_2: Y = \tan \alpha \, (b_{\alpha} - X)$$

$$L: Y = 3 \tan \alpha \, (b_{\alpha} - X)$$

$$P = (x, 3y)$$

$$Q = (0, 0)$$

$$b_{\alpha}$$

$$Q = (x, 0)$$

Further constraint for α

There should be no better Zig-Zag path for T_{α} ! Line L_3 : $Y = \tan(2\alpha)$ runs in parallel with L_2 . This means $-3\tan\alpha = \tan2\alpha$ or $\tan\alpha = \sqrt{\frac{5}{3}}$.

Besicovitch triangles

Theorem: For any $\alpha \in [\arctan(\sqrt{\frac{5}{3}}), 60^{\circ}]$ there is a symmetric Zig-Zag path of length 1 that is an escape path of T_{α} smaller than the diameter b_{α} .

$$ullet$$
 $b_lpha = \sqrt{1 + rac{1}{9 an^2 lpha}}$

•
$$\alpha = 60^\circ$$
: $b_\alpha = \sqrt{\frac{28}{27}}$

- ullet $b_lpha:=1\Longrightarrow\sqrt{rac{27}{28}}<1$ is Zig-Zag path length
- Optimality? Yes!

Different performance measures

- Set L_m of m line segments s_i of unknown length $|s_i|$
- Dark corridors, escape, digging for oil
- Test corridors successively
- s_{j_1} up to a certain distance x_1 , then s_{j_2} for another distance x_2 and so on

More information

- Assume distribution is known!
- $f_1 \ge f_2 \ge \cdots \ge f_m$ order of the length given
- Extreme cases! Good strategies!

More information

- $f_1 \ge f_2 \ge \cdots \ge f_m$ order of the length given
- Check *i* arbitrary segments with length f_i : min_i $i \cdot f_i$ is the best strategy

