Online Motion Planning MA-INF 1314

Summersemester 17 Escape Paths/Alternative Measure

Elmar Langetepe

University of Bonn

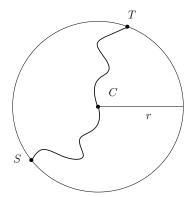
Juli 11th, 2017

Rep.: Simple escape path examples

Obviously: The diameter of any region R is always an escape path!

Theorem: The shortest escape path for a circle of radius r is a line segment of length 2r.

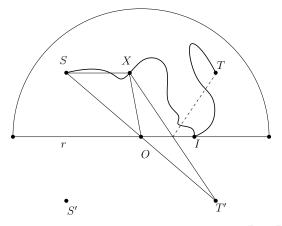
Proof: Assume there is a better escape path! Contradiction!



Rep.: Also for semicircles

Theorem: The shortest escape path for a semicircle of radius r is a line segment of length 2r.

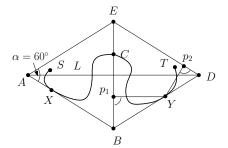
Proof: Assume there is a better escape path! Contradiction!



Rep.: More generally for a rhombus with angle 60°

Theorem: The shortest escape path for a rhombus of diameter L with angle $\alpha=60^\circ$ is a line segment of length L.

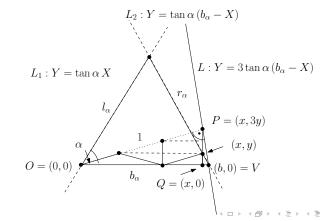
Proof: Assume there is a better escape path! Contradiction!



Rep.: Equilateral triangle, Zig-Zag path

- Equilateral triangle: Besicovitch
- ullet Zig-Zag escape path with length pprox 0.9812
- More generally from Coulton and Movshovich (2006)
- Isosceles triangle for α and b_{α}
- b_{α} is diameter!

i)



Rep.: Calculations!

i)

Finally we determine b_{α} :

$$y = \tan \alpha \left(b_{\alpha} - \frac{1}{b_{\alpha}} \right)$$
 and $x = \frac{1}{b_{\alpha}}$ and $x^2 + (3y)^2 = 1$ which gives

$$b_{\alpha} = \sqrt{1 + \frac{1}{9 \tan^2 \alpha}}.$$

$$L_2: Y = \tan \alpha (b_{\alpha} - X)$$

$$L: Y = 3 \tan \alpha (b_{\alpha} - X)$$

$$P = (x, 3y)$$

$$Q = (0, 0)$$

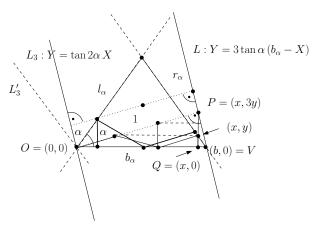
$$b_{\alpha}$$

$$Q = (x, 0)$$

$$Q = (x, 0)$$

Rep.: Further constraint for α

There should be no better Zig-Zag path for T_{α} ! Line L_3 : $Y = \tan(2\alpha)$ runs in parallel with L_2 . This means $-3\tan\alpha = \tan2\alpha$ or $\tan\alpha = \sqrt{\frac{5}{3}}$.



Rep.: Besicovitch triangles

Theorem: For any $\alpha \in [\arctan(\sqrt{\frac{5}{3}}), 60^{\circ}]$ there is a symmetric Zig-Zag path of length 1 that is an escape path of T_{α} smaller than the diameter b_{α} .

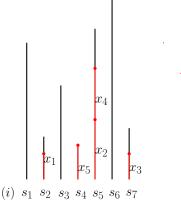
$$ullet$$
 $b_lpha = \sqrt{1 + rac{1}{9 an^2 lpha}}$

•
$$\alpha = 60^\circ$$
: $b_\alpha = \sqrt{\frac{28}{27}}$

- ullet $b_lpha:=1\Longrightarrow\sqrt{rac{27}{28}}<1$ is Zig-Zag path length
- Optimality? Yes!

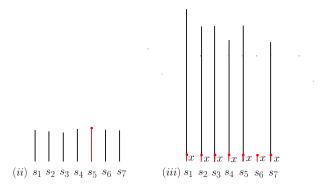
Different performance measures

- Set L_m of m line segments s_i of unknown length $|s_i|$
- Dark corridors, escape, digging for oil
- Test corridors successively
- s_{j_1} up to a certain distance x_1 , then s_{j_2} for another distance x_2 and so on



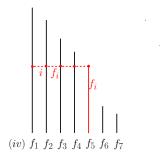
More information

- Assume distribution is known!
- $f_1 \ge f_2 \ge \cdots \ge f_m$ order of the length given
- Extreme cases! Good strategies!



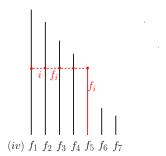
More information

- $f_1 \ge f_2 \ge \cdots \ge f_m$ order of the length given
- Check *i* arbitrary segments with length f_i : min_i $i \cdot f_i$ is the best strategy



Known length in general

- $f_1 \geq f_2 \geq \cdots \geq f_m$ order of the length given
- Check *i* arbitrary segments with length f_i : min_i $i \cdot f_i$ is a reasonable strategy
- $C(F_m, A)$ travel cost for algorithm A
- $\max Trav(F_m) := \min_A C(F_m, A)$



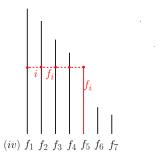
Optimal strategy for this case

Theorem: For a set of sorted distances F_m (i.e.

$$f_1 \geq f_2 \geq \cdots \geq f_m$$
) we have

$$\max \operatorname{Trav}(F_m) := \min_i i \cdot f_i$$
.

Proof:



Optimal strategy for this case

Theorem: For a set of sorted distances F_m (i.e. $f_1 \geq f_2 \geq \cdots \geq f_m$) we have

$$\max \operatorname{Trav}(F_m) := \min_i i \cdot f_i$$
.

Proof:

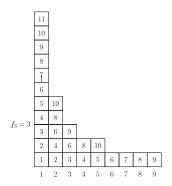
- Arbitrary strategy A
- Less than $\min_i i \cdot f_i$ means less than $j \cdot f_j$ for any j
- Visiting depth $d_1 \geq d_2 \geq \cdots \geq d_m$
- Not reached f_1 by d_1 , not reached f_2 , since $d_1 + d_2 < 2f_2$ and $d_2 \le d_1$ and so on
- Not successful!
- min_i i · f_i always sufficient!

Online Strategy

- F_m with $f_1 \geq f_2 \geq \cdots \geq f_m$ not known
- Compete against $\max Trav(F_m) := \min_i i \cdot f_i$
- Dovetailing strategy: Rounds $c = 1, 2, 3, 4, \dots$
- For any round c from left to right: Path length of segment i is extended up to distance $\left\lfloor \frac{c}{i} \right\rfloor$

Online Strategy

- Dovetailing strategy: Rounds $c = 1, 2, 3, 4, \dots$
- For any round c from left to right: Path length of segment i is extended up to distance $\left\lfloor \frac{c}{i} \right\rfloor$



Online Strategy!

Theorem: Hyperbolic traversal algorithm solves the multi-segment escape problem for any list F_m with maximum traversal cost bounded by

$$D \cdot (\max Trav(F_m) \ln(\min(m, \max Trav(F_m)))$$

for some constant D.

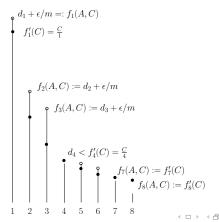
Proof: (W.I.o.g. F_m integers)

- Let $\min_i i \cdot f_i = j \cdot f_j$ for some j
- c with $c = j \cdot f_j$ exists (Round c)
- Overoll cost:

$$\sum_{t=1}^{m} \left\lfloor \frac{c}{t} \right\rfloor \leq \sum_{t=1}^{\min(m,c)} \frac{c}{t} \leq c + \int_{1}^{\min(m,c)} \frac{c}{t} \ dt = c(1 + \ln \min(m,c)).$$

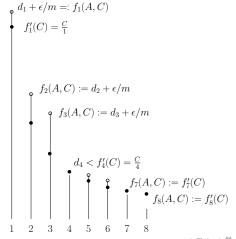
Matches Lower bound!

Theorem: For any deterministic online strategy A that solves the multi-segment escape problem we can construct input sequences $F_m(A, C)$ so that A has cost at least $d \cdot C \ln \min(C, m)$ and $\max \operatorname{Trav}(F_m(C,A)) \leq C$ holds for some constant d and arbitrarily large values C.



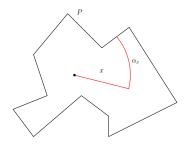
Matches Lower bound! Proof!

- C is given! $f'_i(C) = \frac{C}{i}$ (not yet fixed)
- Wait until cost $\sum_{i=1}^{m} d_i \geq d \cdot C \ln \min(C, m)$ for some d
- Fix the scenario as shown below!



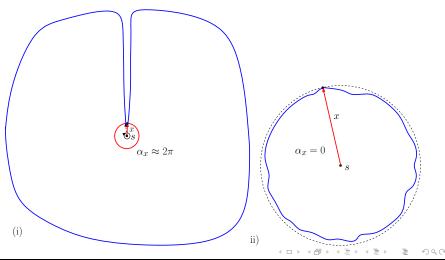
Different performance measure: Simple Polygon

- Simple polygon, escape path unknown
- Searching for different cost measure
- Polygonal extension of the list search problem
- Distance to the boundary x (estimation, given)
- Simple circular strategy $x(1 + \alpha_x)$



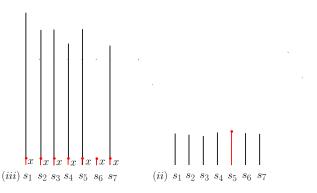
Extreme cases: Circular strategy

- Circular escape path: Distribution of the length is known
- Extreme situations: $x_1(1+2\pi)$, $x_2(1+0)$



Discrete Version! Extreme Cases!

- Assume distribution is known!
- $f_1 \geq f_2 \geq \cdots \geq f_m$ order of the length given
- Extreme cases! $x_1(m)$, $x_2(1)$

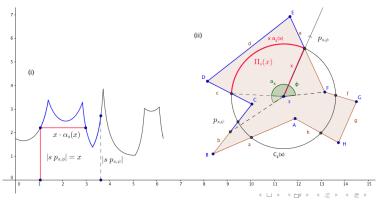


Circular strategy: Star shaped polygon

- Optimal circular espape path for $s \in P$: $\Pi_s(x)$
- For any distance x a worst-case $\alpha_s(x)$
- In total: $min_x x(1 + \alpha_s(x))$

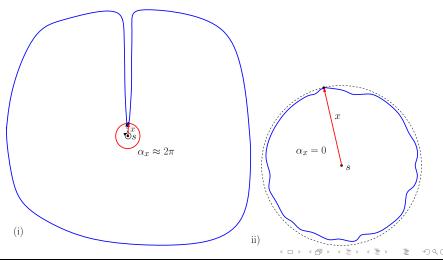
$$\Pi_s := \min_{x} \Pi_s(x) = \min_{x} x(1 + \alpha_s(x)).$$

Radial dist. function interpretation: Area plus height!



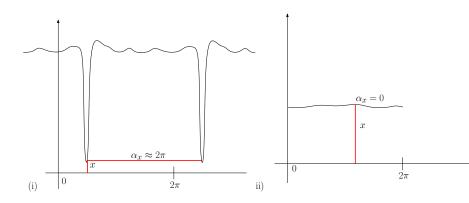
Extreme cases: Radial dist. function

- Circular escape path: Distribution of the length is known
- Extreme situations: $x_1(1+2\pi)$, $x_2(1+0)$



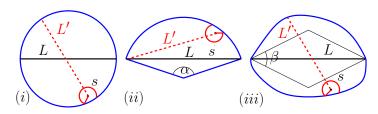
Radial distance function of extreme cases

- Optimal circular espape path
- Hit the boundary by 90 degree wedge
- Area plus height! $min_x x(1 + \alpha_x)$



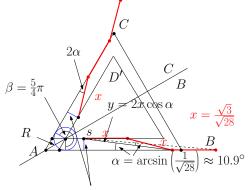
Different justifications

- Simple, computation (polynomial), star-shaped vs. convex
- Natural extension of the discrete certificate (Kirkpatrik)
- Outperforms escape paths for known cases (diameter)



Outperforms Zig-Zag path

- For any position, better than the Zig-Zag path
- Formal arguments!
- Zig-Zag cannot end in farthest vertex: Region R!

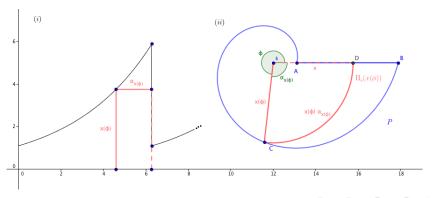


 $d = y \sin \alpha = x \sin 2\alpha \approx 0.1214$

$$0.125 \times (5\pi/4 + 1) < 2x = 2\frac{\sqrt{3}}{\sqrt{28}}$$

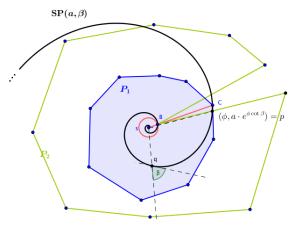
Interesting example

- Distance distribution exactly resembles the polygon
- Analogy to discrete case! Sorting!
- Log. spiral α_x for any x is known: $x(\phi) \cdot (1 + \alpha_{x(\phi)})$ with $\alpha_{x(\phi)} = 2\pi \phi$ and $x(\phi) = A \cdot e^{\phi \cot \beta}$



Online Approximation!

- Inside a polygon P at point s, totally unknown
- Leave the polygon, compare to certificate path for $s \in P$
- Dovetailing strategy (discr. case)! Now spiral strategy (a, β) !



Analysis of a spiral strategy!

- Assume certificate: $x(1 + \alpha_x)$ for s
- Spiral reach distance $x = a \cdot e^{(\phi \alpha_x) \cot(\beta)}$ at angle ϕ
- Worst-case success at angle ϕ ! (Increasing for α_x distances!)
- Ratio:

$$f(\gamma, a, \beta) = \frac{\frac{a}{\cos \beta} \cdot e^{\phi \cot \beta}}{a \cdot e^{(\phi - \gamma) \cot \beta} (1 + \gamma)} = \frac{e^{\gamma \cot \beta}}{\cos \beta (1 + \gamma)} \text{ for } \gamma \in [0, 2\pi]$$

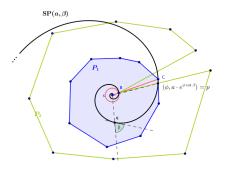
- γ represents possible $\alpha_x!$
- (β, a) represents the spiral strategy!
- Independent from a!
- How to choose β ?

How to choose β ?

- Ratio: $f(\gamma, \beta) = \frac{e^{\gamma \cot \beta}}{\cos \beta (1+\gamma)}$ for $\gamma \in [0, 2\pi]$
- ullet Balance: Choose eta s.th. extreme cases have the same ratio

•
$$f(0,\beta) = \frac{1}{\cos\beta} = \frac{e^{2\pi\cot\beta}}{\cos\beta(1+2\pi)} = f(2\pi,\beta)$$

• $\beta = \operatorname{arccot}\left(\frac{\ln(2\pi+1)}{2\pi}\right) = 1.264714\dots$



Balance the extreme cases!

- $\beta := \operatorname{arccot}\left(\frac{\ln(2\pi+1)}{2\pi}\right) = 1.264714\dots$
- Ratio: $f(\gamma, \beta) = \frac{e^{\gamma \cot \beta}}{\cos \beta (1+\gamma)}$ for $\gamma \in [0, 2\pi]$
- $f(0,\beta) = f(2\pi,\beta) = 3.31864...$ and $f(\gamma,\beta) < 3.31864...$ for $\gamma \in (0,2\pi)$



Spiral strategy for $\beta = 1.264714...$

Theorem: There is a spiral strategy for any unknown starting point s in any unknown environment P that approximates the certificate for s and P within a ratio of 3.31864.