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Rep.: Simple escape path examples

Obviously: The diameter of any region R is always an escape path!

Theorem: The shortest escape path for a circle of radius r is a line
segment of length 2r.

Proof: Assume there is a better escape path! Contradiction!

T
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Rep.: Also for semicircles

Theorem: The shortest escape path for a semicircle of radius r is
a line segment of length 2r.

Proof: Assume there is a better escape path! Contradiction!

g’ T
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Rep.: More generally for a rhombus with angle 60°

Theorem: The shortest escape path for a rhombus of diameter L
with angle o = 60° is a line segment of length L.

Proof: Assume there is a better escape path! Contradiction!
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Rep.: Equilateral triangle, Zig-Zag path

Equilateral triangle: Besicovitch
Zig-Zag escape path with length ~ 0.9812
More generally from Coulton and Movshovich (2006)
Isosceles triangle for o and b,
b, is diameter!
Ly:Y =tana (b, — X)

Li:Y =tana X L:Y =3tana (b, — X)
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Rep.: Calculations!

Finally we determine b,:
y =tana (ba - i) and x = i and x? + (3y)? = 1 which gives

1
by =\/1+—-%—.
V +9tan204

Ly: Y =tana (b, — X)

LY =tana X L:Y =3tana (b, — X)

Elmar Langetepe Online Motion Planning MA-INF 1314



Rep.: Further constraint for a

There should be no better Zig-Zag path for T,!
Line L3 : Y = tan(2«) runs in parallel with Ly. This means

—3tana =tan2a or tana = \/é

L:Y =3tana (b, — X)

L3 : Y =tan2a X
Lf
P = (z,3y)
(#,9)
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Rep.: Besicovitch triangles

Theorem: For any a € [arctan(\/g), 60°] there is a symmetric

Zig-Zag path of lenght 1 that is an escape path of T, smaller than
the diameter b, .

@ b, = 1+ L —

9tan?

— o. _ 28
00[—60.ba— 57

® by :=1=> /35 < lis Zig-Zag path length
@ Optimality? Yes!

Elmar Langetepe Online Motion Planning MA-INF 1314



Different performance measures

Set L, of m line segments s; of unknown length |s;]

Dark corridors, escape, digging for oil

Test corridors successively

sj, up to a certain distance xp, then s;, for another distance x>
and so on

2
L, -
5 3

(i) 51 S2 s3 84 85 86 ST
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More information

@ Assume distribution is known!

e i >fh>--->f, order of the length given
@ Extreme cases! Good strategies!

|

([i) S1 82 83 S4 S5 SG ST

rlxle Tz letlaele
(#ii) 51 S2 53 S4 S5 56 7
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More information

@ i >f >--->f, order of the length given

@ Check / arbitrary segments with length f;:
min; i - f; is the best strategy

bl

() fi fo f3 fao f5 [fs f7

Elmar Langetepe Online Motion Planning MA-INF 1314



Known length in general

@ i >f >--->f, order of the length given

@ Check 7 arbitrary segments with length f;:
min; i - f; is a reasonable strategy

e C(Fpy,A) travel cost for algorithm A
e maxTrav(Fy,) := ming C(Fp, A)

~

() fi fo f3 fa fs fo fr
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Optimal strategy for this case

Theorem: For a set of sorted distances Fp, (i.e.
fi>fh>->"fy) we have

maxTrav(Fp,) :=mini-f;.
1

Proof:

o)

() fi fo f3 fa f5 fo f7
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Optimal strategy for this case

Theorem: For a set of sorted distances F, (i.e.
fi>fh>->"f,) we have

maxTrav(Fp,) == mini - f;.

Proof:
Arbitrary strategy A

Less than min; i - f; means less than j - f; for any j
Visiting depth d; > db > --- > d),

Not reached f; by di,
not reached %, since di + d» < 2f; and d» < di and so on

Not successful!

min; i - f; always sufficient!
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Online Strategy

Fr, with 1 > > --- > f,, not known
Compete against maxTrav(Fp,) := min; i - f;

Dovetailing strategy: Rounds ¢ =1,2,3.4,...

For any round ¢ from left to right:
Path length of segment i is extended up to distance ||
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Online Strategy

@ Dovetailing strategy: Rounds ¢ =1,2,3,4,...

@ For any round c from left to right:
Path length of segment i is extended up to distance EJ

11
10
9

10

f=3

R

[CH RS
IS
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Online Strategy!

Theorem: Hyperbolic traversal algorithm solves the multi-segment
escape problem for any list F,, with maximum traversal cost
bounded by

D - (maxTrav(Fn,) In(min(m, maxTrav(Fp,)))
for some constant D.

Proof:(W.l.o.g. Fp, integers)
@ Let min;i-f; = j-f; for some j
@ c with ¢ = - f; exists (Round c)

@ Overoll cost:

min(m,c)

EEDS

t=1

min(m,c) c
/ " dt = c(1+Inmin(m, c)).

Pr\m
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Matches Lower bound!

Theorem: For any deterministic online strategy A that solves the
multi-segment escape problem we can construct input sequences
Fm(A, C) so that A has cost at least d - C Inmin(C, m) and
maxTrav(F,(C, A)) < C holds for some constant d and arbitrarily
large values C.

di +¢/m = fi(A,C)

fie)=¢

f2(A,C) = dy + ¢/m

f3(A,C) :=ds+¢/m

JrA.C) = ()
T ° R(A,0) = f(O)

1 2 3 4 5 6 7 8
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Matches Lower bound! Proof!

o Cisgiven! f/(C) =< (not yet fixed)
e Wait until cost Y., d; > d - CInmin(C, m) for some d
@ Fix the scenario as shown below!

dy+¢/m=: f1(A,C)

ey =¢

f2(A,C) :=dy+€¢/m

fg(fl, C) =d3+ G/TYL

di < fi(C) =S

1 2 3 4 5 6
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Different performance measure: Simple Polygon

@ Simple polygon, escape path unknown
@ Searching for different cost measure

@ Polygonal extension of the list search problem
@ Distance to the boundary x (estimation, given)
e Simple circular strategy x(1 + )

P
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Extreme cases: Circular strategy

@ Circular escape path: Distribution of the length is known
e Extreme situations: xi(1 + 27), x2(1 4 0)

ii)
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Discrete Version! Extreme Cases!

@ Assume distribution is known!
e i >fh>--->f, order of the length given

e Extreme cases! xi(m), x2(1)

|

(iii) S1 82 83 S4 S5 S ST (ii) S1 82 83 S4 85 S6 ST
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Circular strategy: Star shaped polygon

Optimal circular espape path for s € P: M4(x)
For any distance x a worst-case as(x)
In total: min, x(1+ as(x))

Ms = mXin Ms(x) = mXin x(1+ as(x)) .

@ Radial dist. function interpretation: Area plus height!

3 (ii)

(i)

5o G,
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Extreme cases: Radial dist. function

@ Circular escape path: Distribution of the length is known
e Extreme situations: xi(1 + 27), x2(1 4 0)

ii)
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Radial distance function of extreme cases

e Optimal circular espape path
@ Hit the boundary by 90 degree wedge
@ Area plus height! min, x(1+ ay)
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Different justifications

e Simple, computation (polynomial), star-shaped vs. convex
@ Natural extension of the discrete certificate (Kirkpatrik)

@ Outperforms escape paths for known cases (diameter)

Z’LZ

Elmar Langetepe
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Outperforms Zig-Zag path

@ For any position, better than the Zig-Zag path
@ Formal arguments!
@ Zig-Zag cannot end in farthest vertex: Region R!

\ « = arcsin \/2») ~ 10.9

d=ysina = xsin2a ~ 0.1214

0.125 x (5m/4+ 1) < 22 = 2%
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Interesting example

@ Distance distribution exactly resembles the polygon
@ Analogy to discrete case! Sorting!

@ Log. spiral ay for any x is known:
X(9) - (1 + () With ayg) = 2m — ¢ and x(¢) = A - e? <t
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Online Approximation!

@ Inside a polygon P at point s, totally unknown
@ Leave the polygon, compare to certificate path for s € P
e Dovetailing strategy (discr. case)! Now spiral strategy (a, 3)!

SP(a, 8)
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Analysis of a spiral strategy!

@ Assume certificate: x(1 + ay) for s
e Spiral reach distance x = a - e(?=@)<ot(8) 4t angle ¢
e Worst-case success at angle ¢! (Increasing for «a, distances!)
e Ratio:
_a . e¢C°tﬁ e'ycotﬁ

f(v,a,0B) = cos = for v € [0,2
@ ~ represents possible a!
@ (3, a) represents the spiral strategy!
@ Independent from al
@ How to choose 37
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How to choose (37

. 7y cot 3
e Ratio: f(v,8) = m for v € [0, 2]

@ Balance: Choose 3 s.th. extreme cases have the same ratio
27 cot B
€

° f(O,ﬁ) = colsﬁ = cos B(1+2m) = f(zﬂ,ﬁ)
@ (3 = arccot (%) =1.264714...

SP(a,f)
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Balance the extreme cases!

o = arccot (") —1.264714...
. cot B
e Ratio: f(v,8) = m for v € [0, 2]
o £(0,8) = f(2r,3) = 3.31864 ...
and f(v,3) < 3.31864... for v € (0,27)

28
26
24

22
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Spiral strategy for § = 1.264714 . ..

Theorem: There is a spiral strategy for any unknown starting
point s in any unknown environment P that approximates the
certificate for s and P within a ratio of 3.31864.
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