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On the VC-Dimension of Visibility in Monotone Polygons
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Abstract

We show that the VC-dimension of visibility on the
boundary of a monotone polygon is exactly 6. Our
lower bound construction matches the best known lower
bound for simple polygons.

1 Introduction

The art gallery problem is perhaps one of the best
known problems in computational geometry. An in-
stance of the art gallery problem takes as input a poly-
gon P . The polygon P is defined by a set of points V =
{v1, v2, . . . , vn}. There are edges connecting (vi, vi+1)
where i = 1, 2, . . . , n − 1. There is an edge connecting
(vn, v1). If these edges do not intersect other than at
the points in V , then P is called a simple polygon. The
edges of a simple polygon give us two disjoint regions:
inside the polygon and outside the polygon. For any
two points p, q ∈ P , we say that p sees q if the line
segment pq does not go outside of P . The art gallery
problem seeks to find a set of points G ⊆ P such that
every point p ∈ P is seen by a point in G. We call
this set G a guarding set. The optimization problem is
thus defined as finding the smallest such G. Art gallery
problems are motivated by applications such as line-
of-sight transmission networks in terrains, signal com-
munications and broadcasting, cellular telephony sys-
tems and other telecommunication technologies as well
as placement of motion detectors and security cameras.

1.1 Previous Work on the Art Gallery Problem

The question of whether guarding simple polygons is
NP-hard was confirmed by Aggarwal [1] and Lee and
Lin [16] independently roughly thirty years ago. They
showed that the problem is NP-hard for both vertex
guards (where one can only chose points in V to be
guards) and interior guards (guards can be anywhere
inside P ). Along with being NP-complete, Brodén et
al. and Eidenbenz [2, 6] independently prove that in-
terior guarding simple polygons is APX-hard. This
means that there exists a constant ǫ > 0 such that no
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polynomial-time algorithm can guarantee an approxi-
mation ratio of (1 + ǫ) unless P=NP.

Ghosh provides a O(log n)-approximation for the
problem of vertex guarding an n-vertex simple polygon
in [7]. This result can be improved for simple polygons
using randomization, giving an algorithm with expected
running time O(nOPT 2

v log4 n) that produces a ver-
tex guard cover with approximation factor O(logOPTv)
with high probability, whereOPTv is the smallest vertex
guard cover for the polygon [5]. Whether a polynomial-
time constant factor approximation algorithm can be
obtained for vertex guarding a simple polygon is a long-
standing and well-known open problem. Deshpande et
al. [4] present a pseudopolynomial randomized algo-
rithm for finding a point guard cover with approxima-
tion factor O(logOPT ). King and Kirkpatrick pro-
vide an O(log logOPT )-approximation algorithm for
the problem of guarding a simple polygon with guards
on the perimeter in [12]. The point guarding problem
seems to be much more difficult and precious little is
known about it [4].

Due to the inherent difficulty in fully understand-
ing the art gallery problem for simple polygons, there
has been some work done guarding polygons with some
additional structure. Krohn and Nilsson [15] give a
polynomial-time constant factor approximation algo-
rithm for the special case of the problem when the
polygon is x-monotone. They also proved point guard-
ing and vertex guarding a monotone polygon is NP-
hard [14]. A polygon P is x-monotone (or simply mono-
tone) if any vertical line intersects the boundary of P
in at most two points. Let a and b denote the left-
most and rightmost point of P respectively. Consider
the “top half” of the boundary of P by walking along
the boundary “clockwise” from a to b. We call this the
ceiling of P . Similarly we obtain the floor of P by walk-
ing “clockwise” along the boundary from b to a. No-
tice that both the ceiling and the floor are x-monotone
polygonal chains, that is a vertical line intersects it in
at most one point. Guarding a monotone polygon has
some similarities with the well-studied terrain guard-
ing problem, where we are interested in guarding an x-
monotone polygonal chain. Gibson et al. [8] present
a polynomial-time approximation scheme for the ter-
rain guarding problem improving upon several recent
constant factor approximations, and King and Krohn
proved that the problem is NP-hard [13].
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1.2 VC-Dimension

An interesting measure of the complexity of a set sys-
tem is the notion of VC-dimension. To define this, we
say that a finite set of points G in P is shattered if for
every subset of G′ ⊆ G there exists some point v ∈ P

such that v sees every point in G′ and does not see any
point in G \ G′. In this context, we call v a viewpoint.
The VC-dimension is the largest d such that there exists
some polygon P and point set G of size d that can be
shattered.

Brönnimann and Goodrich give a polynomial-time
O(logOPT )-approximation algorithm for any set sys-
tem with constant VC-dimension [3]. In 1998, Valtr
showed that the VC-dimension of the visiblity in a sim-
ple polygon is between 6 and 23 [17]. The lower bound
of 6 still to this day is the best known lower bound, and
the upper bound was not improved until very recently
by Gilbers and Klein who give an upper bound of 14 [10].
They also suggest that the actual VC-dimension is likely
to be closer to the lower bound of 6 rather than the up-
per bound of 14. The upper bound of 14 for simple poly-
gons also applies to monotone polygons, but the lower
bound construction of 6 given by Valtr is not a mono-
tone polygon and therefore does not apply to monotone
polygons. King [11] proved that the VC-dimension of
visibility on x-monotone terrains is exactly 4, and due to
the relationship of a terrain and the floor of a monotone
polygon, this lower bound of 4 can easily be extended
to obtain a lower bound of 4 for monotone polygons.
Up until very recently, the best known bounds on the
VC-dimension of visiblity in the boundary of monotone
polygons are 4 and 14. In a currently-unpublished re-
sult [9], Gilbers proved an upper bound of 7 on the
VC-dimension of visibility in the boundary of a simple
polygon.

1.3 Our Contribution

In this paper, we prove the following theorem.

Theorem 1 The VC-dimension of the visibility on the
boundary of a monotone polygon is 6.

We improve the lower bound from 4 to 6 by show-
ing that there is a set of 6 points on the boundary of
some monotone polygon that can be shattered by a set
of 26 viewpoints on the boundary of the polygon, and
we improve the upper bound from 7 to 6 by showing
that any set of 7 or more points on the boundary of a
monotone polygon cannot be shattered by 27 viewpoints
on the boundary of the polygon. Note that our lower
bound result matches the best known lower bound result
for simple polygons. Valtr’s lower bound construction
does not place all of the viewpoints on the boundary of
the polygon, and therefore our result improves the best

known lower bound for the VC-dimension of visibility
in the boundary of simple polygons as well.

1.4 Organization of the Paper

In Section 2, we provide some definitions and key obser-
vations regarding the visibility of points on the bound-
ary of a monotone polygon. In Section 3, we prove that
the VC-dimension of the visibility in the boundary of a
monotone polygon is 6.

2 Preliminaries

In this section, we provide some preliminaries needed
before giving the details of the proof of Theorem 1. We
begin with some definitions, and then give some key
lemmas utilized in our proof.

Definitions Recall the definition of ceiling and floor of
P given in the introduction. We say two points on the
boundary are on the same side of P if they are both
on the ceiling or if they are both on the floor. If the x-
coordinate of a point s in P is less than the x-coordinate
of a point t in P then we say s is to the left of t or t is
to the right of s, and we denote this s < t or t > s.
We call the line segment connecting two points that

see each other a good line segment. Consider two points
a and b in a monotone polygon. We say that the line
segment ab is covered from above if for all points p ∈
ab, the ray shot directly up from p intersects a good
line segment. Similarly, we say that ab is covered from
below if for all points p ∈ ab, the ray shot directly down
from p intersects a good line segment. If a line segment
ab is covered by some good line segments from above
and below, then we say this line segment is sandwiched.
Note that if a line segment ab is sandwiched then a

and b have to see each other. If they do not see each
other, either there is a point on the floor above ab or a
point on the ceiling below ab. In either case, this point
would block the endpoints of a good line segment from
seeing each other, a contradiction. Therefore, if two
points should not see each other, then the line segment
connecting them cannot be sandwiched. See Figure 1
for an illustration.

Key Lemmas We now give some key observations that
enabled us to construct our lower bound example and
give the upper bound proof. For ease of description, the
lemmas are not stated in their fullest generality, but it is
not hard to see that the lemmas also apply in symmetric
scenarios. See Figure 4 for an illustration of the lemmas.
A key property of terrains is characterized by the

order claim which states the following: if we have
four points a, b, c, and d on the terrain satisfying (1)
a < b < c < d, (2) a sees c, and (3) b sees d, then
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Figure 1: Part (a) ab is covered from above and blocked by the floor. Part (b) ab is covered from below and blocked
by the ceiling. Part (c) ab is sandwiched

a sees d. Since the ceiling and floor individually are
just terrains, it is natural to wonder if the order claim
also applies to monotone polygons. It is not hard to see
that it does not, as the ceiling can block a from see-
ing d without blocking ac or bd (see Figure 2); however,
the following lemma shows that a similar concept does
indeed apply if an additional condition holds.

Lemma 2 Suppose a, b, c, and d are four points on the
boundary of a monotone polygon P such that a < b <

c < d. Suppose that a, b, and c are on the ceiling of the
polygon (d can be either on the ceiling or floor), a sees
c, and b sees d. If the line segment ad is covered from
below, then a sees d.

Proof. It is easy to see that ac ∪ bd covers ad from
above, and by assumption ad is covered from below, so
ad is sandwiched. See Figure 4 (a). �

The following lemma also plays an important role.

Lemma 3 Suppose a, b, and c are three points on the
boundary of a monotone polygon P such that a < b < c.
If c sees a and does not see b and exactly one of {b, c}
is on the ceiling then b cannot see any point to the right
of c.

Proof. Without loss of generality, assume that b is on
the floor and c is on the ceiling. Since we have a < b,
then ac covers bc from above. Now consider a point p

to the right of c. If c is “below” the line segment bp,
then c blocks b from seeing p. If c is above bp, then bp

covers bc from below, and therefore bc is sandwiched,
contradicting the assumption that b does not see c. See
Figure 3 for an illustration. �

An extension of Lemma 3 yields the following lemma.

Lemma 4 Suppose a, b, c, d, and e are five points on
the boundary of a monotone polygon P such that a <

b < c < d < e. Suppose (1) b and d are on the same
side of the polygon, (2) c is on the opposite side of the
polygon, and (3) c sees a and e and does not see b and
d. Then there is no point in P that sees both b and d.

Proof. By Lemma 3, b does not see any point to the
right of c and d does not see any point to the left of c,
then there is no place to put a point that can see b and
d. See Figure 4 (c). �

Combining the ideas from Lemmas 2 and 3, we ob-
tain the following lemma which plays a large role in our
upper bound proof.

Lemma 5 Let a, b, and c be three points on the bound-
ary of a monotone polygon P such that a < b < c and
b and c are on the same side of P . Let p1 and p2 be
points on the boundary of P such that p1 sees a and c

and does not see b, and p2 sees b and does not see c. If
c < p1 and c < p2, then it must be that p1 < p2, and p1
must be on the same side of P as b and c.

Proof. Without loss of generality, we assume that b

and c are both on the ceiling. It is easy to see that if p1
is on the ceiling to the left of p2 then we can block b from
seeing p1 and block c from seeing p2 without blocking a
good line segment. See Figure 4 (d). We will now show
that any other placement of p1 and p2 to the right of
c will violate one of our previous lemmas. If we place
p2 on the ceiling to the left of p1, then we have that b

sees p1 by Lemma 2, a contradiction. If we place p2 on
the floor to the left of p1, then c cannot see to the right
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Figure 2: Part (a) An illustration of the order claim for terrains. Part (b) An illustration of monotone polygons.
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Figure 3: Part (a) c is “below” the line segment bp. Part (b) c is “above” the line segment bp.

of p2 by Lemma 3, contradicting the assumption that c
sees p1. If we place p1 on the floor to the left of p2, then
b cannot see any point to the right of p1 by Lemma 3,
contradicting the assumption that b sees p2. �

3 VC-Dimension

In this section, we prove Theorem 1. Recall that best
known lower bound on the VC-dimension of a simple
polygon is also 6 [17], but the polygon in this construc-
tion is not monotone and many of the viewpoints lie in
the interior of the polygon. We then show that for any
7 points on the boundary of a monotone polygon, it is
not possible to shatter them by a set of 27 points on the
boundary of the polygon.

3.1 Lower Bound

In this section we give our construction that shows that
there is a set G of six points on the boundary of a mono-
tone polygon that can be shattered. We feel that the
result is somewhat surprising given that the best known
lower bound on the VC-dimension of a simple polygon
is also six. See Figure 5 for the construction. In the fig-
ure, points in G are black, and the viewpoints are red.
The label on the viewpoints denotes which subset of G

the viewpoint sees. We do not show the viewpoints that
see at most one point of G. These can be added in steep
“canyons” below each point of G for the viewpoints that
see only one point, and the point that sees zero of the
points can be handled similarly.

3.2 Upper Bound

We will now prove that any 7 points on the boundary
of a monotone polygon cannot be shattered by a set of
points on the boundary of the polygon. Our proof will
use the lemmas from Section 2. Let G be any set of 7
points on the boundary of a monotone polygon P . For
any subset S ⊆ G, we let vS denote the viewpoint that
sees each point in S and does not see any point in G\S.
Let gℓ be the point in G that is farthest to the left, and
let gr be the point in G that is farthest to the right
(breaking ties arbitrarily in both cases). Let G′ denote
the other 5 points in G. Our proof considers three main
cases based on the position of these points: (1) all five
points are on the ceiling, (2) there are four points on
the ceiling and one on the floor, and (3) there are three
points on the ceiling and two on the floor. Note that
any other situation (i.e. when there are more points
from G′ on the floor than on the ceiling) is symmetric
to one of these three cases. In each case, we will make
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Figure 4: (a) An illustration of Lemma 2, (b) an illustration of Lemma 3, (c) an illustration of Lemma 4, and (d) an
illustration of Lemma 5.
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no assumption as to whether gℓ and gr are on the ceiling
or the floor.

3.2.1 Case 1.

In this case, all five of the points in G′ are on the ceiling,
and we denote the ith point in G′ from left to right ci.
Consider the viewpoint v1 = vp{gℓ,c2,c4,gr}, and with-
out loss of generality assume that it is to the left of
c3. Now consider the viewpoints v2 = vp{c1,c3,c5} and
v3 = vp{gℓ,c2,c3,c5,gr}. We will show that these three
viewpoints cannot be placed together. We will first ar-
gue that v2 and v3 individually cannot be placed to the
left of c4, and then we will show that they cannot be
simultaneously placed to the right of c4.

We will argue that v2 cannot go to the left of c4, and
it will be easy to see that the argument also holds for
v3. Placing v2 between c4 and v1 violates Lemma 5 with
a = gr, b = c5, c = c4, p1 = v1, and p2 = v2 (see Figure 6
(a)). Placing v2 to the left of v1 violates Lemma 5 with
a = c5, b = c4, c = c3, p1 = v2, and p2 = v1 (see Figure
6 (b)). Therefore v2 (and v3) cannot go to the left of c4.
We will now show that v2 and v3 cannot simultaneously
be placed to the right of c4. Applying Lemma 5 with
a = gℓ, b = c1, c = c2, p1 = v3, and p2 = v2, we have v3
must be on the ceiling to the left of v2. But then we have
that c2 sees v2 by Lemma 2 where a = c2, b = c3, c = v3,

and d = v2(see Figure 6 (c)).

3.2.2 Case 2.

In this case, four of the points in G′ are on the ceil-
ing and there is one point in G′ on the floor. We de-
note the ceiling points c1, c2, c3, and c4 from left to
right and the floor point f1. Consider the viewpoint
v1 = vp{gℓ,c1,c3,gr}. We will consider two subcases based
on the position of v1.

v1 is to the left of c2. Consider the viewpoint v2 =
vp{gℓ,c2,c4,gr}. We will show that v2 cannot go to the
left of c3. If we place v2 between c3 and v1 then we
violate Lemma 5 with a = gr, b = c4, c = c3, p1 = v1,

and p2 = v2 (see Figure 7 (a)). If we place v2 to the left
of v1 then we violate Lemma 5 with a = gr, b = c3, c =
c2, p1 = v2, and p2 = v1 (see Figure 7 (b)). Therefore
v2 cannot go to the left of c3.

Now consider the viewpoint v3 = vp{gℓ,c1,c4,f1,gr}. We
will show that v3 cannot go to the left of c3. Applying
Lemma 5 with a = gr, b = c4, c = c3, p1 = v1, and
p2 = v3, we can see that v3 must be to the left of v1 and
v1 must be on the ceiling (see Figure 7 (c)). Now we
can see that f1 cannot be to the right of v1, because if
it were then it couldn’t see v3 by Lemma 3. So suppose
that f1 is to the left of v1. By Lemma 3, we have that
f1 cannot see any point to the right of v1. But if the

viewpoint vp{c2,f1,gr} is to the left of v1, then we have
that c3 will see it by Lemma 2 (see Figure 7 (d)).
So we now have that both v2 and v3 must go to the

right of c3. By Lemma 5 with a = gℓ, b = c1, c = c2, p1 =
v2, and p2 = v3 that v2 is to the left of v3 and is on the
ceiling (see Figure 7 (e)). Now we can see that f1 cannot
be to the left of v2, because if it were then it couldn’t
see v3 by Lemma 3. So suppose that f1 is to the right
of v2. By Lemma 3, we have that f1 cannot see any
point to the left of v2. But if the viewpoint vp{gℓ,c3,f1}
is to the right of v2, then we have that c2 will see it by
Lemma 2 (see Figure 7 (f)).

v1 is to the right of c2. Now consider the viewpoints
v4 = vp{gℓ,c2,c3,gr} and v5 = vp{gℓ,c2,c4,f1,gr}. We will
show that these points cannot go to the right of c3.
We will argue from the perspective of v4 but the same
arguments hold for v5 as well. Suppose v4 is to the
right of c3. Then by Lemma 5 with a = gℓ, b = c1, c =
c2, p1 = v4, and p2 = v1, it must be that v4 < v1 and
that v4 is on the ceiling. But this implies that c2 sees
v1 by Lemma 2. Therefore it cannot be the case that v4
(and v5) is to the right of c3 (see Figure 7 (g)).
Now we will assume that v4 and v5 are to the left of

c3. By Lemma 5 with a = gr, b = c4, c = c3, p1 = v4,

and p2 = v5, we have that v5 < v4 and that v4 must be
on the ceiling. We can now see that f1 cannot be to the
right of v4, because if it were then it could not see any
point to the left of v4 by Lemma 3 and therefore could
not see v5. So we will assume that f1 is to the left of
v4, and therefore cannot see any point to the right of v4
by Lemma 3 (see Figure 7 (h)).
So now consider the viewpoint v6 = vp{gℓ,c1,c3,f1,gr}.

Since f1 sees both v5 and v6, they both must be to
the left of v4 and thus necessarily to the left of c3. By
Lemma 5 with a = gr, b = c4, c = c3, p1 = v6, and
p2 = v5, it must be that v5 < v6 and that v6 is on the
ceiling. If v6 is to the right of c2, then we have that c1
sees v4 by Lemma 2 (see Figure 7 (i)). If v6 is to the
left of c2, then we have that c3 sees v5 by Lemma 2 (see
Figure 7 (j)). This concludes the proof that v1 cannot
go to the right of c2, and also completes the proof of
Case 2.

3.2.3 Case 3.

In this case, we have three points of G′ on the ceiling
and two on the floor. Let c1, c2, and c3 denote the three
ceiling points from left to right, and similarly let f1 and
f2 denote the two floor points. We make no assumption
whether a ceiling point ci is to the left or right of a floor
point fj .
Consider the set V of six viewpoints that see gℓ, gr,

exactly one ceiling point, and exactly one floor point
(i.e. vp{gℓ,c2,f2,gr}, vp{gℓ,c3,f1,gr}, etc.). For simplicity,
we denote the viewpoint that sees ci and fj as vi,j . We
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Figure 6: An illustration of Case 1.

will show that it is not possible to place all viewpoints
in V along with the viewpoint p = vp{gℓ,c1,c3,f1,f2,gr}.
To do this, we will make use of the following corollary
that easily follows from Lemma 3.

Corollary 6 If there is a viewpoint v on the ceiling that
sees gℓ and gr and does not see some floor point fi, then
there cannot be any pair of viewpoints p1 and p2 that
both see fi such that p1 < v < p2.

We begin by showing that it is not possible to place
both v2,1 and v2,2 on the ceiling. Suppose that they are
both on the ceiling, and assume without loss of gener-
ality that v2,1 < v2,2. Now consider placing the point
p. Note that by Corollary 6, it must be that p is be-
tween v2,1 and v2,2. Suppose we place p to the left of
c2, which implies that v2,1 is also to the left of c2. Ap-
plying Lemma 5 with a = gr, b = c3, c = c2, p1 = v2,1
and p2 = p, we see that p must be to the left of v2,1, a
contradiction (see Figure 8 (a)). A symmetric argument
holds when p is placed between v2,1 and v2,2 to the right
of c2, and we conclude that at least one of v2,1 and v2,2
is on the floor.
So now we will assume that at least one of v2,1 and v2,2

is on the floor. For the remainder of the proof, we will
refer to the floor points as fi and fj as the arguments
will not depend on the left-to-right orientation of the
floor points. So now consider placing the viewpoint v2,i
on the floor. It cannot be placed between c1 and c3 by
Lemma 4, and we assume it is to the left of c1 without
loss of generality (see Figure 8 (b)).
We will now show that at least one of c1 and c3 must

have both of their corresponding points in V on the
ceiling by showing that if a c1 point in V is on the
floor then a c3 point in V cannot also be on the floor.
Without loss of generality, suppose v1,i is on the floor.
By Lemma 3, we have that v1,i cannot go to the left

of v2,i as c1 cannot see any points to the left of v2,i
(see Figure 8 (c)), and it cannot go between v2,i and c2
because c2 would not be able to see v2,i by Lemma 3 (see
Figure 8 (d)). Therefore if v1,i is on the floor, it must go
to the right of c2. It also cannot go between c2 and c3
by Lemma 4 (see Figure 8 (e)), and therefore must be to
the right of c3. Now without loss of generality consider
placing v3,j on the floor. For the same reasoning as v1,i,
it cannot be placed to the left of c2. It also cannot be
placed between c2 and v1,i or c1 would not see v1,i by
Lemma 3. Finally we cannot place v3,j to the right of
v1,i as c3 would not see it by Lemma 3 (see Figure 8
(f)).

We now have that at least one of c1 and c3 have both
of their corresponding points in V on the ceiling. Note
that in either case, there must be a point on the ceiling
that sees gℓ and gr and does not see fi as well as a
point on the ceiling that sees gℓ and gr and does not see
fj. We conclude the proof of Case 3 by showing that
in either scenario we cannot place all of the points in
V ∪ {p}.

v1,i and v1,j are both on the ceiling. First note that
both v1,i and v1,j must be to the right of v2,i for c1
to be able to see them, and therefore by Corollary 6 it
must be that v1,i < v1,j . Now consider the placement
of p. Corollary 6 implies p must be between v1,i and
v1,j because p sees both fi and fj. Further note that p
cannot be to the left of c2 (see Figure 8 (g)), because
Lemma 5 with a = gr, b = c3, c = c2, p1 = v2,i, and
p2 = p implies that v2,i would need to be on the ceiling,
but v2,i is on the floor by assumption. This implies that
p and v1,j both need to be to the right of c2.

Now consider v2,j . We will first show that it cannot
go to the left of c2. By Corollary 6, it cannot go to
the left of v1,i. It cannot go on the ceiling between v1,i
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Figure 7: An illustration of Case 2.

and c2 also by Corollary 6 as there would be points that
see fi both to the left and right of v2,j . It cannot be
on the floor between c1 and c2 or c1 would not see p

by Lemma 3. And finally v2,j and v1,i cannot both be
to the left of c1 (see Figure 8 (h)), as Lemma 5 with
a = gr, b = c2, c = c1, p1 = v1,i, and p2 = v2,j would
imply that v2,j must be to the left of v1,i.

So now we suppose that v2,j is to the right of c2.
Applying Lemma 5 with a = gℓ, b = c1, c = c2, p1 =
v2,j , and p2 = p, we have that p must be to the right

of v2,j and that v2,j must be on the ceiling. But this
contradicts Corollary 6 as v2,j would have a point that
sees fi to its left (v2,i) and another to its right (p) (see
Figure 8 (i)).

v3,i and v3,j are both on the ceiling. Note that both
v3,i and v3,j must be to the right of v2,i or c3 could not
see them by Lemma 3. Further note that both v3,i and
v3,j cannot be between c2 and v2,i or c3 would see v2,i
by Lemma 2. So we will assume that both v3,i and v3,j
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Figure 8: An illustration of Case 3.
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are to the right of c2.
Applying Corollary 6, we have that v3,i must be to

the left of v3,j , there can be no viewpoint that sees fi
to the right of v3,j , and there can be no viewpoint that
sees fj to the left of v3,i. Now consider the placement
of v2,j . Since it sees fj , it cannot go to the left of v3,i
so suppose we place it to the right of v3,i. Now consider
the placement of viewpoint p. Since it sees fj , it must
be placed to the right of v3,i and therefore is to the
right of c2. Applying Lemma 5 with a = gℓ, b = c1, c =
c2, p1 = v2,j , and p2 = p, we have that p must be to the
right of v2,j and v2,j must be on the ceiling. But this
contradicts Corollary 6 as v2,j would have a point that
sees fi to its left (v2,i) and another to its right (p) (see
Figure 8 (j)).
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