Discrete and Computational Geometry, SS 18 Exercise Sheet "1": Dilation of Graphs and Chains University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Tuesday 17th of April.
- You may work in groups of at most two participants.
- You can hand over your work to our tutor Raoul Nicolodi in the beginning of the lecture.

Exercise 1: Number of dilation pairs

(4 Points)
The geometric dilation of a planar graph G is defined as

$$
\delta_{\text {geom }}(G):=\sup _{p \neq q \in G} \frac{\left|\pi_{p}^{q}\right|}{|p q|}
$$

where $|p q|$ is the euclidean distance from p to q and $\left|\pi_{p}^{q}\right|$ is the length of a shortest path in G from p to q.
Let Γ be the set of non-intersecting polygonal chains C in the plane where $\delta(C)>1$. Let n be the number of vertices of C and $P(C)$ be the number of pairs $p, q \in C$, where the geometric dilation of C is attained and p is a vertex of C.

- Prove the upper bound $P(C) \in O\left(n^{2}\right)$ if $C \in \Gamma$.
- Verify that $P(C) \in \Omega\left(n^{2}\right)$ holds by giving a construction scheme for suitable chains C (for an arbitrary number n of vertices).
- Prove $P(C)=\infty$ holds if $C \notin \Gamma$ is an arbitrary non-intersecting polygonal chain.

Exercise 2: Visibility and maximum dilation

The graph-theoretic dilation of a planar graph G with vertex set V is

$$
\delta_{\text {graph }}(G):=\sup _{p \neq q \in V} \frac{\left|\pi_{p}^{q}\right|}{|p q|}
$$

where $|p q|$ is the euclidean distance from p to q and $\left|\pi_{p}^{q}\right|$ is the length of a shortest path in G from p to q.

- Construct a planar graph G where the maximum graph-theoretic dilation of G is attained by a pair of non-visible vertices.
- Recall the definition of geometric dilation of a planar graph. Prove that for a planar, simply connected graph G there is always a pair of points $p, q \in G$ with maximal dilation so that p and q are co-visible.

Exercise 3: Dilation and AVDs

(4 Points)
The decision problem for the geometric dilation of a polygonal chain $C=$ $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ was translated into the problem of tracing the chain C through an additively weighted Voronoi diagram.
We proved the following statement: If for a point $\left(q_{x}, q_{y}\right) \in C$ appearing after $C_{i}=\left(p_{1}, p_{2}, \ldots, p_{i}\right)$ on C, the point $\left(q_{x}, q_{y}, a_{q}\right)$ with $a_{q}:=\frac{\left|C_{p_{1}}^{q}\right|}{K}$ lies below any cone $K_{p_{i}}$ starting at height $a_{p_{i}}:=\frac{\left|C_{p_{1}}^{p_{i}}\right|}{K}$ at p_{i}, the dilation $\delta_{C}\left(p_{i}, q\right)$ between q and p_{i} is smaller than K.

- Why do we trace the chain $p_{i}, p_{i+1}, \ldots, p_{n}$ through the additively weighted Voronoi diagram of $p_{1}, p_{2}, \ldots, p_{i}$ with weigths $a_{p_{i}}$?
- Why can we compute the Voronoi diagram for all points $p_{1}, p_{2}, \ldots, p_{n}$ with weights $a_{p_{i}}$ and trace the complete chain (for one direction) only once? Or the other way round: Why is it not necessary to incrementally compute the Voronoi diagrams for $p_{1}, p_{2}, \ldots, p_{i}$ and successively trace the chains $p_{i}, p_{i+1}, \ldots, p_{n}$?

