
SIAM J. COMPUT. c© 2015 Prosenjit Bose, Rolf Fagerberg, André
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OPTIMAL LOCAL ROUTING ON DELAUNAY TRIANGULATIONS
DEFINED BY EMPTY EQUILATERAL TRIANGLES∗

PROSENJIT BOSE† , ROLF FAGERBERG‡ , ANDRÉ VAN RENSSEN§¶, AND

SANDER VERDONSCHOT†

Abstract. We present a deterministic local routing algorithm that is guaranteed to find a path
between any pair of vertices in a half-θ6-graph (the half-θ6-graph is equivalent to the Delaunay
triangulation where the empty region is an equilateral triangle). The length of the path is at most
5/

√
3 ≈ 2.887 times the Euclidean distance between the pair of vertices. Moreover, we show that

no local routing algorithm can achieve a better routing ratio, thereby proving that our routing
algorithm is optimal. This is somewhat surprising because the spanning ratio of the half-θ6-graph is
2, meaning that even though there always exists a path whose length is at most twice the Euclidean
distance, we cannot always find such a path when routing locally. Since every triangulation can be
embedded in the plane as a half-θ6-graph using O(logn) bits per vertex coordinate via Schnyder’s
embedding scheme [W. Schnyder, Embedding planar graphs on the grid, in Proceedings of the 1st
Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 1990), ACM, New York, SIAM,
Philadelphia, 1990, pp. 138–148], our result provides a competitive local routing algorithm for every
such embedded triangulation. Finally, we show how our routing algorithm can be adapted to provide
a routing ratio of 15/

√
3 ≈ 8.660 on two bounded degree subgraphs of the half-θ6-graph.
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1. Introduction. A fundamental problem in networking is the routing of a mes-
sage from one vertex to another in a graph. What makes routing more challenging
is that often in a network the routing strategy must be local. Informally, a routing
strategy is local when the routing algorithm must choose the next vertex to forward a
message to based solely on knowledge of the source and destination vertex, the current
vertex, and all vertices directly connected to the current vertex. Routing algorithms
are considered geometric when the graph is embedded in the plane, with edges be-
ing straight line segments connecting pairs of points and weighted by the Euclidean
distance between their endpoints. Geometric routing algorithms are important in
wireless sensor networks (see [18] and [20] for surveys of the area) since they offer
routing strategies that use the coordinates of the vertices to help guide the search as
opposed to using the more traditional routing tables.

Papadimitriou and Ratajczak [19] posed a tantalizing question in this area that
led to a flurry of activity: Does every 3-connected planar graph have a straight-line
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embedding in the plane that admits a local routing strategy such as greedy routing?1

They provided a partial answer by showing that 3-connected planar graphs can always
be embedded in R

3 such that they admit a greedy routing strategy. They also showed
that the class of complete bipartite graphs, Kk,6k+1 for all k ≥ 1, cannot be embedded
such that greedy routing always succeeds since every embedding has at least one
vertex that is not connected to its nearest neighbor. Bose and Morin [8] showed
that greedy routing always succeeds on Delaunay triangulations. In fact, a slightly
restricted greedy routing strategy known as greedy-compass is the first local routing
strategy shown to succeed on all triangulations [6]. Dhandapani [11] proved the
existence of an embedding that admits greedy routing for every triangulation, and
Angelini, Frati, and Grilli [1] provided a constructive proof. Leighton and Moitra [17]
settled Papadimitriou and Ratajczak’s question by showing that every 3-connected
planar graph can be embedded in the plane such that greedy routing succeeds. One
drawback of these embedding algorithms is that the coordinates require Ω(n logn) bits
per vertex. To address this, He and Zhang [14] and Goodrich and Strash [13] gave
succinct embeddings using only O(log n) bits per vertex. Recently, He and Zhang [15]
showed that every 3-connected plane graph admits a succinct embedding with convex
faces on which a slightly modified greedy routing strategy always succeeds.

In light of these recent successes, it is surprising to note that the above routing
strategies solely concentrate on finding an embedding that guarantees that a local
routing strategy will succeed but pay little attention to the quality of the resulting
path. For example, none of the above routing strategies have been shown to be
competitive. A geometric routing strategy is said to be competitive if the length of
the path found by the routing strategy is not more than a constant times the Euclidean
distance between its endpoints. This constant is called the routing ratio. Bose and
Morin [8] show that many local routing strategies are not competitive but show how to
route competitively on the Delaunay triangulation. However, Dillencourt [12] showed
that not all triangulations can be embedded in the plane as Delaunay triangulations.
This raises the following question: can every triangulation be embedded in the plane
such that it admits a competitive local routing strategy? We answer this question in
the affirmative.

The half-θ6-graph was introduced by Bonichon et al. [4], who showed that it
is identical to the Delaunay triangulation where the empty region is an equilateral
triangle. Although both graphs are identical, the local definition of the half-θ6-graph
makes it more useful in the context of routing. We formally define the half-θ6-graph
in the next section. Our main result is a deterministic local routing algorithm that is
guaranteed to find a path between any pair of vertices in a half-θ6-graph whose length
is at most 5/

√
3 times the Euclidean distance between the pair of vertices. On the way

to proving our main result, we uncover some local properties of spanning paths in the
half-θ6-graph. Since Schnyder [21] showed that every triangulation can be embedded
in the plane as a half-θ6-graph using O(log n) bits per vertex coordinate, our main
result implies that every triangulation has an embedding that admits a competitive
local routing algorithm. Moreover, we show that no local routing algorithm can
achieve a better routing ratio on a half-θ6-graph, implying that our routing algorithm
is optimal. This is somewhat surprising because Chew [10] showed that the spanning
ratio of the half-θ6-graph is 2. Thus, our lower bound provides a separation between

1A routing strategy is greedy when a message is always forwarded to the vertex whose distance to
the destination is the smallest among all vertices in the neighborhood of the current vertex, including
the current vertex.
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the spanning ratio of the half-θ6-graph and the best achievable routing ratio on the
half-θ6-graph. We believe that this is the first separation between the spanning ratio
and routing ratio of any graph. It also makes the half-θ6-graph one of the few graphs
for which tight spanning and routing ratios are known. Finally, we show how our
routing algorithm can be adapted to provide a routing ratio of 15/

√
3 on two bounded

degree subgraphs of the half-θ6-graph introduced by Bonichon et al. [5]. To the best
of our knowledge, this is the first competitive routing algorithm on a bounded-degree
plane graph.

2. Preliminaries. In order to find a competitive path between any two vertices
of a graph, such a path must first exist. Graphs that meet this criterion are called
spanners. Formally, given a weighted graphG, we define the distance dG(u, v) between
two vertices u and v to be the sum of the weights of the edges in the shortest path
between u and v in G. A subgraph H of G is a t-spanner of G if for all pairs of
vertices u and v, dH(u, v) ≤ t · dG(u, v) for t ≥ 1. We say that H is a spanner if it is
a t-spanner for some constant t. The spanning ratio of H is the smallest t for which
it is a t-spanner. The graph G is referred to as the underlying graph.

Unless otherwise noted, we assume that the underlying graph G is a straight-line
embedding of the complete graph on a set of n points in the plane, with the weight of
an edge (u, v) being the Euclidean distance |uv| between u and v. A spanner of such
a graph is called a geometric spanner. We focus on one specific class of geometric
spanners: the half-θ6-graph. In a slight abuse of notation, we often speak about the
spanning ratio of the half-θ6-graph. By this, we mean the maximum spanning ratio of
any half-θ6-graph on any set of n points in the plane. In the remainder of this section,
we describe the construction of the half-θ6-graph and introduce some notation.

C0

C1C2

C1

C0

C2

u

u

(a) (b)

v

Fig. 1. (a) The cones around a vertex u. (b) The construction of the half-θ6-graph. In each
positive cone, u connects to the vertex with the closest projection on the bisector of that cone.

Given a set P of points in the plane, we consider each point u ∈ P and partition
the plane into six cones (regions in the plane between two rays originating from the
same point) with apex u, each defined by two rays at consecutive multiples of π/3
radians from the positive x-axis. We label the cones C1, C0, C2, C1, C0, and C2

in counterclockwise order around u, starting from the positive x-axis (see Figure 1a).
The cones C0, C1, and C2 are called positive, while the others are called negative.
When the apex is not clear from the context, we use Cu

i to denote cone Ci with apex
u.

To build the half-θ6-graph, we consider each vertex u and add an edge to the
“closest” vertex in each of its positive cones. However, instead of using the Euclidean
distance, we measure distance by projecting each vertex in the cone onto the bisector
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of the cone. We call the vertex in this cone whose projection is closest to u the closest
vertex and connect it to u with an edge (see Figure 1b). For simplicity, we assume
that no two points lie on a line parallel to a cone boundary, guaranteeing that each
vertex connects to exactly one vertex in each positive cone. Hence the graph has at
most 3n edges in total.

Given two vertices u and v such that v lies in a positive cone of u, we define their
canonical triangle Tuv to be the triangle bounded by the cone of u that contains v
and the line through v perpendicular to the bisector of that cone. For example, the
shaded region in Figure 1b is the canonical triangle of u and v. Note that for any pair
of vertices u and v, either v lies in a positive cone of u, or u lies in a positive cone
of v, so there is exactly one canonical triangle (either Tuv or Tvu) for the pair. The
construction of the half-θ6-graph can alternatively be described as adding an edge
between two vertices if and only if their canonical triangle is empty. This property
will play an important role in our proofs.

3. Spanning ratio of the half-θ6-graph. Bonichon et al. [4] showed that
the half-θ6-graph is a geometric spanner with spanning ratio 2 by showing that it is
equivalent to the Delaunay triangulation based on empty equilateral triangles, which
is known to have spanning ratio 2 [10]. One direction of this equivalence is easy to
see, since, by construction, every edge of the half-θ6-graph has an empty equilateral
triangle. For the other direction, recall that every triangle in the Delaunay trian-
gulation has its vertices on the boundary of an empty equilateral triangle in a fixed
orientation. Bonichon et al. showed that for each edge of the Delaunay triangulation,
one can shrink the empty equilateral triangle such that one of the endpoints of the
edge lies on a corner and the other lies on the boundary, thereby proving it is an
edge of the half-θ6-graph. This correspondence also shows that the half-θ6-graph is
internally triangulated: every face except for the outer face is a triangle (this follows
from the duality with the Voronoi diagram, along with the fact that all vertices in
the Voronoi diagram have degree 3, provided that no four points lie on the same
equilateral triangle).

In this section, we provide an alternative proof of the spanning ratio of the half-
θ6-graph. Our proof shows that between any pair of points, there always exists a
path with spanning ratio 2 that lies in the canonical triangle. This property plays an
important role in our routing algorithm, which we describe in section 5. For a pair
of vertices u and w, our bound is expressed in terms of the angle α between the line
from u to w and the bisector of their canonical triangle (see Figure 2a).

Theorem 1. Let u and w be vertices with w in a positive cone of u. Let m be
the midpoint of the side of Tuw opposing u, and let α be the unsigned angle between
uw and um. There exists a path between u and w in the half-θ6-graph, of length at
most

(
√
3 · cosα+ sinα) · |uw|,

where all vertices on this path lie in Tuw.
The expression

√
3 · cosα + sinα is increasing for α ∈ [0, π/6]. Inserting the

extreme value π/6 for α, we arrive at the following.
Corollary 2. The spanning ratio of the half-θ6-graph is 2.
We note that the bounds of Theorem 1 and Corollary 2 are tight: for all values of

α ∈ [0, π/6] there exists a point set for which the shortest path in the half-θ6-graph for
some pair of vertices u and w has length arbitrarily close to (

√
3 · cosα+sinα) · |uw|.

A simple example appears later in the proof of Theorem 4.
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Fig. 2. (a) Two vertices u and w with their canonical triangle Tuw. The angle α is the unsigned
angle between the line uw and the bisector of the cone containing w. (b) The corners a and b, and
the regions A and B.

Proof of Theorem 1. Given two vertices u and w, we assume without loss of
generality that w lies in Cu

0 . We prove the theorem by induction on the rank, when
ordered by area, of the triangles Txy for all pairs of points x and y where y lies in a
positive cone of x. Let a and b be the upper left and right corners of Tuw, and let
A = Tuw ∩ Cw

1 and B = Tuw ∩Cw
2 , as illustrated in Figure 2b.

Our inductive hypothesis is the following, where δ(u,w) denotes the length of the
shortest path from u to w in the part of the half-θ6-graph induced by the vertices in
Tuw.

1. If A is empty, then δ(u,w) ≤ |ub|+ |bw|.
2. If B is empty, then δ(u,w) ≤ |ua|+ |aw|.
3. If neither A nor B is empty, then δ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}.

We first note that this induction hypothesis implies Theorem 1: using the side
of Tuw as the unit of length, we have from Figure 2a that |wm| = |uw| · sinα and√
3/2 = |um| = |uw| · cosα. Hence the induction hypothesis gives us that δ(u,w) is

at most 1+1/2+ |wm| = √
3 · (√3/2)+ |wm| = (

√
3 · cosα+sinα) · |uw|, as required.

Base case. Tuw has rank 1. Since there are no smaller canonical triangles, w must
be the closest vertex to u. Hence the edge (u,w) is in the half-θ6-graph, and δ(u,w) =
|uw|. Using the triangle inequality, we have |uw| ≤ min{|ua| + |aw|, |ub| + |bw|}, so
the induction hypothesis holds.

Induction step. We assume that the induction hypothesis holds for all pairs of
points with canonical triangles of rank up to i. Let Tuw be a canonical triangle of
rank i+ 1.

If (u,w) is an edge in the half-θ6-graph, the induction hypothesis follows by the
same argument as in the base case. If there is no edge between u and w, let v be
the vertex closest to u in the positive cone Cu

0 , and let a′ and b′ be the upper left
and right corners of Tuv. By definition, δ(u,w) ≤ |uv| + δ(v, w), and by the triangle
inequality, |uv| ≤ min{|ua′|+ |a′v|, |ub′|+ |b′v|}.

We perform a case distinction on the location of v: a. v lies neither in A nor in
B. b. v lies inside A. c. v lies inside B. The case where v lies inside B is analogous
to the case where v lies inside A, so we only discuss the first two cases, which are
illustrated in Figure 3.
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Fig. 3. The two cases: (a) v lies in neither A nor B; (b) v lies in A.

Case a. Let c and d be the upper left and right corners of Tvw, and let C =
Tvw ∩ Cw

1 and D = Tvw ∩ Cw
2 (see Figure 3a). Since Tvw has smaller area than Tuw,

we apply the inductive hypothesis on Tvw. Our task is to prove all three statements
of the inductive hypothesis for Tuw.

1. If A is empty, then C is also empty, so by induction δ(v, w) ≤ |vd| + |dw|.
Since v, d, b, and b′ form a parallelogram, we have

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
= |ub|+ |bw|,

which proves the first statement of the induction hypothesis. This argument is illus-
trated in Figure 4a.

2. If B is empty, an analogous argument proves the second statement of the
induction hypothesis.

3. If neither A nor B is empty, by induction we have δ(v, w) ≤ max{|vc| +
|cw|, |vd|+ |dw|}. Assume, without loss of generality, that the maximum of the right-
hand side is attained by its second argument |vd|+ |dw| (the other case is analogous).
Since vertices v, d, b, and b′ form a parallelogram, we have that

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
≤ |ub|+ |bw|
≤ max{|ua|+ |aw|, |ub|+ |bw|},

which proves the third statement of the induction hypothesis. This argument is
illustrated in Figure 4b.

Case b. Let E = Tuv ∩ Twv, and let a′′ be the upper left corner of Twv (see Fig-
ure 3b). Since v is the closest vertex to u in one of its positive cones, Tuv is empty,
and hence E is also empty. Since Twv is smaller than Tuw, we can apply induction
on it. As E is empty, the first statement of the induction hypothesis for Twv applies,
giving us that δ(v, w) ≤ |va′′| + |a′′w|. Since |uv| ≤ |ua′| + |a′v| and v, a′′, a, and
a′ form a parallelogram, we have that δ(u,w) ≤ |ua|+ |aw|, proving the second and
third statements in the induction hypothesis for Tuw. This argument is illustrated in
Figure 4c. Since v lies in A, the first statement in the induction hypothesis for Tuw

is vacuously true.
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Fig. 4. Visualization of the path inequalities in three cases: (a) v lies in neither A nor B and
one of A or B is empty (cases a.1 and a.2 in our proof); (b) v lies in neither A nor B and neither
is empty (case a.3); (c) v lies in A or B (case b). The paths occurring in the equations are drawn
with thick lines, and shaded areas indicate empty regions.

4. Remarks on the spanning ratio. The full-θ6-graph, introduced by Keil
and Gutwin [16], is similar to the half-θ6-graph except that all six cones are positive
cones. Thus, the full-θ6-graph is the union of two copies of the half-θ6-graph, where
one half-θ6-graph is rotated by π/3 radians. The half-θ6-graph and the full-θ6-graph
both have a spanning ratio of 2, with lower bound examples showing that it is tight
for both graphs. This is surprising since the full-θ6-graph can have twice the number
of edges of the half-θ6-graph.

Note that since the full-θ6-graph consists of two rotated copies of the half-θ6-
graph, one question that comes to mind is “What is the best spanning ratio if one is
to construct a graph consisting of two rotated copies of the half-θ6-graph?” Can one
do better than a spanning ratio of 2? Consider the following construction. Build two
half-θ6-graphs as described in section 2, but rotate each cone of the second graph by
π/6 radians. For each pair of vertices, there is a path of length at most

√
3 cosα+sinα

times the Euclidean distance between them, where α is the angle between the line
connecting the vertices in question, and the closest bisector. Since this function is
increasing, the spanning ratio is defined by the maximum possible angle to the closest
bisector, which is π/12 radians, giving a spanning ratio of roughly 1.932.

By using k copies, we improve the spanning ratio even further: if each is rotated
by π/(3k) radians, we get a spanning ratio of

√
3 cos π

6k+sin π
6k . This is better than the

known upper bounds for the full-θ3k-graph [9] for k ≤ 3 and for the Yao3k-graph [3]
for k ≤ 4.

Corollary 3. The union of k copies of the half-θ6-graph, each rotated by
π/(3k) radians, is a geometric spanner with up to 3k edges and spanning ratio at
most

√
3 cos π

6k + sin π
6k .

5. Routing in the half-θ6-graph. In this section, we give matching upper and
lower bounds for the routing ratio on the half-θ6-graph. We begin by defining our
model. Formally, a routing algorithm A is a deterministic k-local, m-memory routing
algorithm if the vertex to which a message is forwarded from the current vertex s
is a function of s, t, Nk(s), and M , where t is the destination vertex, Nk(s) is the
k-neighborhood of s, and M is a memory of size m, stored with the message. The
k-neighborhood of a vertex s is the set of vertices in the graph that can be reached
from s by following at most k edges. For our purposes, we consider a unit of memory
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to consist of a log2 n bit integer or a point in R
2. Our model also assumes that the

only information stored at each vertex of the graph is Nk(s). Since our graphs are
geometric, we identify each vertex by its coordinates in the plane. A routing algorithm
is d-competitive provided that the total distance traveled by the message is never more
than d times the Euclidean distance between source and destination. Analogous to
the spanning ratio, the routing ratio of an algorithm is the smallest d for which it is
d-competitive.

We present a deterministic 1-local 0-memory algorithm that achieves the upper
bounds, but our lower bounds hold for any deterministic k-local 0-memory algorithm,
provided k is a constant. Our bounds are expressed in terms of the angle α between
the line from the source to the destination and the bisector of their canonical triangle
(see Figure 2a).

Theorem 4. Let u and w be two vertices, with w in a positive cone of u. Let
m be the midpoint of the side of Tuw opposing u, and let α be the unsigned angle
between uw and um. There is a deterministic 1-local 0-memory routing algorithm on
the half-θ6-graph for which every path followed has length at most

(i) (
√
3 · cosα+ sinα) · |uw| when routing from u to w,

(ii) (5/
√
3 · cosα− sinα) · |uw| when routing from w to u,

and this is the best possible for deterministic k-local, 0-memory routing algorithms,
where k is constant.

The first expression is increasing for α ∈ [0, π/6], while the second expression
is decreasing. Inserting the extreme values π/6 and 0 for α, we get the following
worst-case version of Theorem 4.

Corollary 5. Let u and w be two vertices, with w in a positive cone of u.
There is a deterministic 1-local 0-memory routing algorithm on the half-θ6-graph with
routing ratio

(i) 2 when routing from u to w,
(ii) 5/

√
3 = 2.886 . . . when routing from w to u,

and this is the best possible for deterministic k-local, 0-memory routing algorithms,
where k is constant.

Since the spanning ratio of the half-θ6-graph is 2, the second lower bound shows
a separation between the spanning ratio and the best possible routing ratio in the
half-θ6-graph.

Since every triangulation can be embedded in the plane as a half-θ6-graph using
O(log n) bits per vertex via Schnyder’s embedding scheme [21], an important impli-
cation of Theorem 4 is the following.

Corollary 6. Every n-vertex triangulation can be embedded in the plane using
O(log n) bits per coordinate such that the embedded triangulation admits a determin-
istic 1-local 0-memory routing algorithm with routing ratio at most 5/

√
3.

In the remainder of this section, we prove Theorem 4. We split the proof into two
cases, depending on whether the destination lies in a positive (section 5.1) or negative
(section 5.2) cone of the source. In each case, we present first a proof of the lower
bound, then a description of the routing algorithm, and finally a proof of the upper
bound.

5.1. Positive routing.

Lemma 7 (lower bound for positive routing). Let u and w be two vertices, with
w in a positive cone of u. Let m be the midpoint of the side of Tuw opposing u, and
let α be the unsigned angle between uw and um. For any routing algorithm, there are
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instances for which the path followed has length at least (
√
3 ·cosα+sinα) · |uw| when

routing from u to w.

Proof. Let the side of Tuw be the unit of length. From Figure 2a, we have |wm| =
|uw| · sinα and

√
3/2 = |um| = |uw| · cosα. From Figure 5, the spanning ratio of the

half-θ6-graph is at least 1+1/2+|wm| = √
3·(√3/2)+|wm| = (

√
3·cosα+sinα)·|uw|,

since the point in the upper left corner of Tuw can be moved arbitrarily close to the
corner. As there is no shorter path between u and w, this is a lower bound for any
routing algorithm.

u

w

α

m

Fig. 5. The lower bound example when routing to a vertex in a positive cone.

Routing algorithm. While routing, let s denote the current vertex, and let t denote
the fixed destination (i.e., t corresponds to w in Theorem 4). To be deterministic,
1-local, and 0-memory, the routing algorithm needs to determine which edge (s, v) to
follow next based only on s, t, and the neighbors of s. We say we are routing positively
when t is in a positive cone of s and routing negatively when t is in a negative cone.
(Note the distinction between “positive routing” and “routing positively”: the first
describes the conditions at the start of the routing process, while the second does
so during the routing process. In other words, positive routing describes a routing
process that starts by routing positively. It is very common for positive routing to
include situations where we are routing negatively; see, e.g., Figure 8b.)

For ease of description, we assume without loss of generality that t is in cone Cs
0

when routing positively and in cone C
s

0 when routing negatively. When routing pos-
itively, Tst intersects only Cs

0 among the cones of s. When routing negatively, Tts

intersects C
s

0, as well as the two positive cones Cs
1 and Cs

2 . Let X0 = C
s

0 ∩ Tts,
X1 = Cs

1 ∩ Tts, and X2 = Cs
2 ∩ Tts. Let a be the corner of Tts contained in X1 and b

the corner of Tts contained in X2. These definitions are illustrated in Figure 6.

The routing algorithm will only follow edges (s, v) where v lies in the canonical
triangle of s and t. Routing positively is straightforward since there is exactly one
edge (s, v) with v ∈ Tst, by the construction of the half-θ6-graph. The challenge is to
route negatively. When routing negatively, at least one edge (s, v) with v ∈ Tts exists,
since, by Theorem 1, s and t are connected by a path inside Tts. The core of our
routing algorithm is how to choose which edge to follow when there is more than one.
Intuitively, when routing negatively, our algorithm tries to select an edge that makes
measurable progress toward the destination. When no such edge exists, we are forced
to take an edge that does not make measurable progress; however, we are able to then
deduce that certain regions within the canonical triangle are empty. This allows us to
bound the total distance traveled while not making measurable progress. We provide
a formal description of our routing algorithm below.
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Fig. 6. Routing terminology when (a) routing positively and (b) routing negatively.

Our routing algorithm can be in one of four cases. We call the situation when
routing positively case A, and divide the situation when routing negatively into three
further cases: both X1 and X2 are empty (case B), either X1 or X2 is empty (case C),
or neither is empty (case D). Since X1 and X2 correspond to positive cones of s,
each contains the endpoint of at most one edge (s, v). These edges contain a lot of
information about the regions X1 and X2. In particular, if there is no edge in the
corresponding cone, then the entire cone must be empty. And if there is an edge,
but its endpoint lies outside of the region, the region is guaranteed to be empty. This
allows our algorithm to locally determine if X1 and X2 are empty, and therefore which
case we are in.

Since we are routing to a destination in a positive cone of the source, our routing
algorithm starts in case A. Routing in this case is straightforward, as there is only one
edge (s, v) with v in Tts that we can follow. We now turn our attention to routing in
cases B and C (it turns out that case D never occurs when routing to a destination
in a positive cone of the source; we come back to it when describing negative routing
in section 5.2).

In case B, both X1 and X2 are empty, so there must be edges (s, v) with v ∈ X0,
as s and t are connected by a path in Tts by Theorem 1. If |as| ≥ |sb|, the routing
algorithm follows the last edge in clockwise order around s; if |as| < |sb|, it follows the
first edge. In short, when both sides of Tts are empty, the routing algorithm favors
staying close to the largest empty side of Tts. Note that |as| and |sb| can be computed
locally from the coordinates of s and t.

In case C, exactly one of X1 or X2 is empty. If there exist edges (s, v) with
v ∈ X0, the routing algorithm will follow one of these, choosing among them in the
following way: If X1 is empty, it chooses the last edge in clockwise order around s.
Else X2 is empty, and it chooses the first edge in clockwise order around s. In short,
the routing algorithm favors staying close to the empty side of Tts. If no edges (s, v)
with v ∈ X0 exist, the routing algorithm follows the single edge (s, v) with v in X1 or
X2.

Upper bound. The proof of the upper bound uses a potential function φ, defined
as follows for each of the cases A, B, and C. For the potential in case C, x ∈ {a, b} is
the corner contained in the nonempty one of the two areas X1 and X2.



1636 BOSE, FAGERBERG, VAN RENSSEN, AND VERDONSCHOT

Case A: φ = |sa|+max(|at|, |tb|)
Case B: φ = |ta|+min(|as|, |sb|)
Case C: φ = |ta|+ |sx|

t

bs

t

a s

Case B Case C

s

bt

Case A

aa b

Fig. 7. The potential φ in each case. Thick lines designate potential, and shading designates
empty areas.

This definition is illustrated in Figure 7. We will refer to the first term of φ (i.e.,
|sa| in case A and |ta| in cases B and C) as the vertical part of φ and to the rest as the
horizontal part. Note that since all sides of the canonical triangle have equal length,
a and b are interchangeable in the vertical part. The proof makes extensive use of the
following observation about equilateral triangles.

Observation 1. In an equilateral triangle, the diameter (the longest distance
defined by any two points in the triangle) is equal to the side length.

Our aim is to prove the following claim: for any routing step, the reduction in φ
is at least as large as the length of the edge followed. This allows us to “pay” for each
edge with the difference in potential, thereby bounding the total length of the path
by the initial potential. We do this by case analysis of the possible routing steps.

Case A. For a routing step starting in case A, v can be in a negative or a positive
cone of t. The first situation leads to case A again. The second leads to case B
or C, since the area of Tst between s and v must be empty by construction of the
half-θ6-graph. These situations are illustrated in Figure 8.

If we remain in case A after following edge (s, v), the reduction of the vertical
part of φ (dashed in Figure 8a) is at least as large as |sv| by Observation 1. Therefore
we can use it to pay for this step. Since Tvt is contained in Tst, both |at| and |bt|
decrease. Thus the horizontal part of φ decreases, too, as it is the maximum of the
two. Hence the claim holds for this situation.

For the situation ending in case C (the second illustration after the arrow in
Figure 8b), we again use the reduction of the vertical part of φ to pay for the step.
The rest of the vertical part precisely covers the new horizontal part. Since Ttv is
contained in Tst, the new vertical part is a portion of either ta or tb. This can be
covered by the current horizontal part, as it is the maximum of |ta| and |tb|. Thus the
claim holds for this situation as well. Finally, for the situation ending in case B, the
final value of φ is at most that of the situation ending in case C, so again the claim
holds.

Case B. A routing step starting in case B (illustrated in Figure 9) cannot lead to
case A, as the step stays within Tts. We first show that it always results in Case B
or C, meaning that at least one of X1 or X2 is empty again. The algorithm follows
an edge (s, v) with v ∈ X0. If s is to the left of t, it follows the first edge in clockwise
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Fig. 8. Routing in case A. (a) v lies in a negative cone of t; (b) v lies in a positive cone of t.
Thick dashed lines indicate which parts of the potential are used to pay for the edge.
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Fig. 9. Routing in case B.

order around s; otherwise it follows the last one. We consider only the case where s is
to the left of t; the other case is symmetric. By the construction of the half-θ6-graph,
the existence of the edge (s, v) implies that Tvs is empty. It follows that the hatched
area in Figure 9 is also empty: if not, the topmost point in it would have an edge
to s, while coming before v in the clockwise order around s, contradicting the choice
of v by the routing algorithm. Therefore X2 will again be empty, resulting in case B
or C.

By Observation 1, the reduction in the vertical part of φ is at least as large as
|sv|. In addition, the horizontal part of φ can only decrease. If it remains on the same
side of the triangle, this follows from the fact that v lies in X0 and Ttv is contained in
Tts. And the only case where the potential switches sides is when we end up in case B
again but the other side is shorter than the current one, reducing the potential even
further. Hence the claim holds.
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Fig. 10. Routing in case C.

Case C. As in the previous case, a routing step starting in case C cannot lead to
case A, and we show that it cannot lead to case D, either. There are two situations,
depending on whether edges (s, v) with v ∈ X0 exist. For the situation where such
edges do exist (illustrated in Figure 10a), the analysis is exactly the same as for a
routing step starting in case B.

For the situation where edges (s, v) with v ∈ X0 do not exist, the start of the
step is illustrated on the left of the arrow in Figure 10b. Again, Tsv must be empty
by the construction of the half-θ6-graph, which implies that the hatched area must
also be empty: if not, the topmost point in it would have an edge to s, contradicting
that edges (s, v) with v ∈ X0 do not exist. Thus, the routing step can only lead to
case B or C. Looking at the potential, the vertical part can only decrease, and by
Observation 1, the reduction of the horizontal part of φ is at least as large as |sv|.
Thus we can pay for this step as well, and the claim holds in both situations.

Lemma 8 (upper bound for positive routing). Let u and w be two vertices, with
w in a positive cone of u. Let m be the midpoint of the side of Tuw opposing u,
and let α be the unsigned angle between uw and um. There is a deterministic 1-local
0-memory routing algorithm on the half-θ6-graph for which every path followed has
length at most (

√
3 · cosα+ sinα) · |uw| when routing from u to w.

Proof. That the algorithm is deterministic, 1-local, and 0-memory follows from
the description of the algorithm, so we only need to prove the bound on the distance.
We showed that for any routing step, the reduction in φ is at least as large as the length
of the edge followed. Since φ is always nonnegative, this implies that no path followed
can be longer than the initial value of φ. As all edges have strictly positive length,
the routing algorithm must terminate. Since we are routing to a vertex in a positive
cone, we start in case A, with an initial potential of |ua|+max(|aw|, |wb|). Taking the
side of Tuw as the unit of length reduces this to 1 + 1/2 + |wm|, and using the same
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analysis as in Lemma 7, we obtain the desired bound of (
√
3 ·cosα+sinα) · |uw|.

5.2. Negative routing. Next we turn our attention to the case when we are
routing to a destination in a negative cone of the source. We start by deriving a
lower bound, and then we present the required extensions to our routing algorithm
and finish with the matching upper bound.

Lemma 9 (lower bound for negative routing). Let u and w be two vertices, with
w in a positive cone of u. Let m be the midpoint of the side of Tuw opposing u, let α be
the unsigned angle between uw and um, and let k be a constant. For any deterministic
k-local 0-memory routing algorithm, there are instances for which the path followed
has length at least (5/

√
3 · cosα− sinα) · |uw| when routing from w to u.

Proof. Consider the two instances in Figure 11. Any deterministic 1-local 0-
memory routing algorithm has information about direct neighbors only. Hence, it
cannot distinguish between the two instances when routing out of w. This means
that it routes to the same neighbor of w in both instances, and either choice of
neighbor leads to a nonoptimal route in one of the two instances. The smallest loss
occurs when the choice is toward the closest corner of Tuw, for which Figure 11a is
the bad instance. If we let the side of Tuw be the unit of length, this gives a lower
bound of (1/2 − |wm|) + 1 + 1 = 5/2 − |wm|, since the points in the corners of Tuw

can be moved arbitrarily close to the corners while keeping their relative positions.
Using that |wm| = |uw| · sinα and

√
3/2 = |um| = |uw| · cosα, the lower bound

reduces to (5/
√
3 · cosα− sinα) · |uw|. By appropriately adding Ω(k) points close to

the corners such that u is not in the k-neighborhood of w, the lower bound holds for
any deterministic k-local 0-memory routing algorithm.

u

w

u

w

(a) (b)

m m

Fig. 11. The lower bound instances for routing to a vertex in a negative cone.

Routing algorithm. The only difference with the routing algorithm we used for
positive routing lies in the initial case. Since our destination is in a negative cone,
we start in one of the negative cases. This time, in addition to cases B and C, where
both or one of X1 and X2 are empty, we also need case D, where neither is empty.
Recall that in the previous section, we showed that a routing step starting in case A,
B, or C can never result in case D. Thus, if the routing process starts in case D, it
never returns there once it enters case A, B, or C.

In case D, the routing algorithm first tries to follow an edge (s, v) with v ∈ X0. If
several such edges exist, an arbitrary one of these is followed. If no such edge exists,
the routing algorithm follows the single edge (s, v) with v in the smaller of X1 and X2.
In short, the routing algorithm favors moving toward the closest corner of Tts when
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it is not able to move toward t. Note that, in the instances of Figure 11, this choice
ensures that the first routing step incurs the smallest loss in the worst case, making
it possible to meet the lower bound of Lemma 9. We now show that our algorithm
achieves this lower bound in all cases.

Upper bound. The potential in case D is given in Figure 12. It mirrors the lower
bound path in that it allows walking toward the closest corner, crossing the triangle,
and then walking down to t. This is the highest potential among the four cases.

Case D: φ = |ta|+ |ab|+min(|as|, |sb|)

t

bs

Case D

a

Fig. 12. The potential φ in case D.

As before, we want to show that for any routing step, the reduction in φ is at
least as large as the length of the edge followed. Since we already did this for cases A,
B, and C, all that is left is to prove it for case D.

Case D. A routing step starting in case D cannot lead to case A, as the step stays
within Tts, but it may lead to case B, C, or D. There are two situations, depending
on whether edges (s, v) with v ∈ X0 exist or not. These are illustrated in Figure 13.
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Fig. 13. Routing in case D. The endpoint v of the edge followed lies in X0 (a), or the smaller
of X1 and X2 (b).

In the first situation, where we follow an edge (s, v) with v ∈ X0, the reduction of
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the vertical part of φ is at least as large as |sv| by Observation 1. The horizontal part
of φ can only decrease, as Ttv is fully contained in Tts and v lies in X0. In the second
situation, where the endpoint of our edge lies in the smaller of X1 and X2, these roles
switch, with the reduction of the horizontal part of φ being at least as large as |sv|
and the vertical part of φ only decreasing. In both situations, the statement is proven.

Lemma 10 (upper bound for negative routing). Let u and w be two vertices,
with w in a positive cone of u. Let m be the midpoint of the side of Tuw opposing u,
and let α be the unsigned angle between uw and um. There is a deterministic, 1-local,
0-memory routing algorithm on the half-θ6-graph for which every path followed has
length at most (5/

√
3 · cosα− sinα) · |uw| when routing from w to u.

Proof. Since the choices that the routing algorithm makes are completely de-
termined by the neighbors of s and the location of s and t, the algorithm is indeed
deterministic, 1-local, and 0-memory. To bound the length of the resulting path, we
again showed that for any routing step, the reduction in φ is at least as large as the
length of the edge followed. As in the proof of Lemma 8, this implies that the routing
algorithm terminates and that the total length of the path followed is bounded by
the initial value of φ. Since our destination lies in a negative cone, we start in one of
the cases B, C, or D. Of these three cases, case D has the largest initial potential of
|ta| + |ab|+min(|as|, |sb|). Taking the side of Tuw as the unit of length reduces this
to 1 + 1+ 1/2− |wm| = 5/2− |wm|, and, using the same analysis as in Lemma 9, we
obtain the desired bound of (5/

√
3 · cosα− sinα) · |uw|.

As Theorem 4 follows from Lemmas 7, 8, 9, and 10, this concludes our proof.

6. A stateful algorithm. Next we present a slightly different routing algorithm
from the one in the previous section. The main difference between the two algorithms
is that this one maintains one piece of information as state, making it O(1)-memory
instead of 0-memory. The information that is stored is a preferred side, and it is
either nil, X1, or X2. Intuitively, the new algorithm follows the original algorithm
until it is routing negatively and determines that either X1 or X2 is empty. At that
point, the algorithm sets the empty side as the preferred side and picks the rest of
the edges in such a way that the preferred side remains empty. Thus, the algorithm
maintains as invariant that if the preferred side is set (not nil), that region is empty.
Furthermore, once the preferred side is set, it stays fixed until the algorithm reaches
the destination. This algorithm simplifies the cases a little, but, more importantly,
it allows the algorithm to check far fewer edges while routing. This is crucial, as the
new algorithm forms the basis for routing algorithms on versions of the half-θ6-graph
with some edges removed to bound the maximum degree, as described in the next
section.

We now present the details of this stateful version of the routing algorithm. Recall
that we are trying to find a path from a current vertex s to a destination vertex t.
For ease of description, we again assume without loss of generality that t lies in C0

or C0 of s. If t lies in C0, the cones around s split Tts into three regions X0, X1, and
X2, as in Figure 6. For brevity, we use “an edge in X0” to denote an edge incident
to s with the other endpoint in X0. The cases are as follows:

• If t lies in a positive cone of s, we are in case A.
• If t lies in a negative cone of s and no preferred side has been set yet, we are
in case B.

• If t lies in a negative cone of s and a preferred side has been set, we are in
case C.

These cases are closely related to the cases in the stateless algorithm. Cases A
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and B correspond to cases A and D, respectively, while case C merges cases B and
C from the original algorithm into a single case, where only one side’s emptiness is
tracked. This is reflected in the routing strategy for each case:

• In case A, follow the unique edge (s, v) in the positive cone containing t. If t
lies in a negative cone of v, set the preferred side to the region (X1 or X2 of
v) that is contained in Tsv, as this is now known to be empty (see Figure 8b).

• In case B, if there are edges in X0, follow an arbitrary one. Otherwise, if
there is an edge in the smaller of X1 and X2, follow that edge. Otherwise,
follow the edge in the larger of X1 and X2, and set the other as the preferred
side. By Theorem 1, at least one of these edges must exist.

• In case C, if there are edges in X0, follow the one closest to the preferred side
in cyclic order around s. Otherwise, follow the edge in the positive cone that
is not on the preferred side. Again, at least one of these edges must exist.

The proof in section 5 can be adapted to show that this routing algorithm achieves
the same upper bounds. In short, the proof is simplified to only use a potential as
defined for cases A, C, and D, and only a subset of the illustrations in Figures 8, 10,
and 13 are relevant. We omit the repetitive details.

7. Bounding the maximum degree. Each vertex in the half-θ6-graph has at
most one incident edge in each positive cone, but it can have an unbounded number of
incident edges in its negative cones. In this section, we describe two transformations
that allow us to bound the total degree of each vertex. The transformations are
adapted from Bonichon et al. [5].

The first transformation discards all edges in each negative cone, except for three:
the first and last edges in clockwise order around the vertex and the edge to the
“closest” vertex, meaning the vertex whose projection on the bisector of the cone is
closest (see Figure 14a). This results in a subgraph with maximum degree 12, which
we call G12.

u

(a) (b)

u

Fig. 14. The construction for G12(a) and G9(b). Solid edges are kept, while dotted edges are
discarded if no other vertex wants to keep them.

To reduce the degree even further, we note that since the half-θ6-graph is inter-
nally triangulated, consecutive neighbors of u within a negative cone are connected by
edges. We call the path formed by these edges the canonical path. Instead of keeping
three edges per negative cone, we now keep only the edge to the closest vertex but
force the edges of the canonical path to be kept as well (see Figure 14b). We call
the resulting graph G9. Bonichon et al. [5] showed that all edges on the canonical
path are either first or last in a negative cone, making G9 a subgraph of G12. Note
that since the half-θ6-graph is planar, both subgraphs are planar as well. They also
proved that G9 is a 3-spanner of the half-θ6-graph with maximum degree 9. Since the
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half-θ6-graph is a 2-spanner and G9 is a subgraph of G12, this shows that both G9

and G12 are 6-spanners of the complete Euclidean graph. We give an adapted version
of the proof of the spanning ratio of G9 below.

Theorem 11. G9 is a 3-spanner of the half-θ6-graph.

Proof. Consider an edge (s, v) in the half-θ6-graph, and assume, without loss of
generality, that v lies in a negative cone of s (if not, we can swap the roles of s and
v). Now consider the path between them in G9 consisting of the edge from s to the
vertex closest to s, followed by the edges on the canonical path between the closest
vertex and v. We will refer to this path as the approximation path, and we show that
it has length at most 3 · |sv|.

s

v

v0

v1

a

b

c

d

m1 m2

Fig. 15. The approximation path.

Let v0 be the closest vertex, and let v1, . . . , vk = v be the other vertices on the
approximation path. We assume without loss of generality that s lies in C0 of v and
that v lies to the right of v0. We shoot rays parallel to the boundaries of C0 from each
vertex on the approximation path. Let mi be the intersection of the right ray of vi−1

and the left ray of vi (see Figure 15). These intersections must exist, as s is the closest
vertex in Cvi

0 , for each vi. Let a and b be the intersections of the left boundary of C
s

0

with the left rays of v and v0, respectively, and let c be the intersection of this left
boundary with the horizontal line through v. Finally, let d be the intersection of the
right ray of v0 and the left ray of v. We can bound the length of the approximation
path as follows:

|sv0|+
k∑

i=1

|vi−1vi|

≤ |sb|+ |bv0|+
k∑

i=1

|vi−1mi|+
k∑

i=1

|mivi|

= |sb|+ |bv0|+ |ab|+ |dv| {by projection}
= |sb|+ |ab|+ |av|
≤ |sc|+ 2 · |cv|.

The last inequality follows from the fact that v0 is the closest vertex to s. Let α
be ∠csv. Some basic trigonometry gives us that |sc| = 2√

3
·sin (α+ π

3

) · |sv| and |cv| =
2√
3
· sinα · |sv|. Thus the approximation path is at most 2√

3
· (sin (α+ π

3

)
+ 2 · sinα)

times as long as (s, v). Since this function is increasing in [0, π
3 ], the maximum is

achieved for α = π/3, where it is 3. Therefore every edge of the half-θ6-graph can
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be approximated by a path that is at most three times as long, and the theorem
follows.

Note that the part of the approximation path that lies on the canonical path has
length at most 2 · |cv| = 4√

3
· sinα · |sv|. This function is also increasing in [0, π3 ], and

its maximal value is 2, so the total length of this part is at most 2 · |sv|.
7.1. Routing in G12. The stateful algorithm in section 6 constructs a path

between two vertices in the half-θ6-graph. We cannot directly follow this path in G12,
as some of the edges may have been removed. Hence, we need to find a new path in
G12 that approximates the path in the half-θ6-graph, taking the missing edges into
account. This often amounts to following the approximation path for edges that are
in the path in the half-θ6-graph but were removed to create G12. In addition, some
of the information the algorithm uses to decide which edge to follow relies on the
presence or absence of edges in the half-θ6-graph. Since the absence of these edges in
G12 does not tell us whether or not they were present in the half-θ6-graph, we need
to find a new way to make these decisions.

First, note that the only information needed to determine which of the three
cases we are in is the coordinates of s and t and whether the preferred side has been
set or not. Therefore we can still make this distinction in G12. The following five
headlines refer to steps of the stateful algorithm on the half-θ6-graph, and the text
after a headline describes how to simulate that step in G12. We discuss modifications
for G9 in section 7.2.

Follow an edge (s, v) in a positive cone C. If the edge of the half-θ6-graph is still
present in G12, we simply follow it. If it is not, the edge was removed because s is
on the canonical path of v and it is not the closest, first, or last vertex on the path.
Since G12 is a supergraph of G9, we know that all of the edges of the canonical path
are kept and every vertex on the path originally had an edge to v in C. Therefore it
suffices to traverse the canonical path in one direction until we reach a vertex with
an edge in C, and follow this edge. Since the edges connecting v to the first and last
vertices on the path are always kept, the edge we find in this way must lead to v.
Note that the edges of the canonical path are easy to identify, as they are the closest
edges to C in cyclic order around s (one on either side of C).

This method is guaranteed to reach v, but we want to find a competitive path to v.
Therefore we use exponential search along the canonical path: we start by following
the shorter of the two edges of the canonical path incident to s. If the endpoint of this
edge does not have an edge in C, we return to s and travel twice the length of the first
edge in the other direction. We keep returning to s and doubling the maximum travel
distance until we find a vertex x that does have an edge in C. If x is not the closest to v,
by the triangle inequality, following its edge to v is shorter than continuing our search
until we reach the closest and following its edge. So for the purpose of bounding the
distance traveled, we can assume that x is closest to v. Let d be the distance between
s and x along the canonical path. By using exponential search to find x, we travel at
most nine times this distance [2], and afterward we follow (x, v). From the proof of
Theorem 11, we know that d ≤ 2 · |sv| and d + |xv| ≤ 3 · |sv|. Thus the total length
of our path is at most 9 · d+ |xv| = 8 · d+ (d+ |xv|) ≤ 16 · |sv|+ 3 · |sv| = 19 · |sv|.

Determine if there are edges in X0. In the regular half-θ6-graph we can look at
all our neighbors and see if any of them lie in X0. However, in G12, these edges may
have been removed. Fortunately, we can still determine if they existed in the original
half-θ6-graph. To do this, we look at the vertices of the canonical path in this cone
that are first and last in clockwise order around s. If these vertices do not exist, s did
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Fig. 16. Possible regions for the first and last vertices.

not have any incoming edges in this cone, so there can be no edges in X0. If the first
and last are the same vertex, this was the only incoming edge to s from this cone, so
we simply check if its endpoint lies in X0. The interesting case is when the first and
last exist and are distinct. If either of them lies in X0, we have our answer, so assume
that both lie outside of X0. Since they were connected to s, they cannot have t in
their positive cone, so they must lie in one of two regions, which we call S1 and S2

(see Figure 16).

If both the first and last lie in S2, there can be no edge in X0, since any vertex of
the canonical path in X0 either lies in cone C0 of the last vertex or would come after
the last vertex in clockwise order around s. Both yield a contradiction. If both lie in
S1, a similar argument using the first vertex applies.

On the other hand, if the first lies in S2 and the last in S1, both X1 and X2 have
to be empty, since both vertices are connected to s. Now we are in one of two cases:
either X0 is also empty, or it is not. If there are no vertices in X0 (different from t and
s), t must have had an edge to s. On the other hand, if there are other vertices in X0,
the topmost of these vertices must have had an edge to s. In either case, there must
have been an edge in X0. This shows that we can check whether there was an edge
in X0 in the half-θ6-graph using only the coordinates of the first and last vertices.

Follow an arbitrary edge in X0. If the half-θ6-graph has edges in X0, we simulate
following an arbitrary one of these by first following the edge to the closest vertex
in the negative cone. If this vertex is in X0, we are done. Otherwise, we follow the
canonical path in the direction of X0 and stop once we are inside. This traverses
exactly the approximation path of the edge,and hence travels a distance of at most
three times the length of the edge.

Determine if there is an edge in X1 or X2. Since these regions are symmetric,
we will consider only the case for X1. Since X1 is contained in a positive cone of s, it
contains at most one edge incident to s. If the edge is present in G12, we can simply
test whether the other endpoint lies in X1. However, if s does not have a neighbor
in this cone (see Figure 17), we need to find out whether it used to have one in the
original half-θ6-graph and, if so, whether it was in X1. Since this step is only needed
in case B after we determine that there are no edges inX0, we can use this information
to guide our search. Specifically, we know that if we find an edge, we should follow it.

Therefore we simply attempt to follow the edge in this cone, using the exponential
search method for following an edge in a positive cone described earlier. Let x be the
first vertex we encounter that still has an edge (x,w) in C1. If, in the half-θ6-graph,
s had an edge (s, v) in X1, then we know (from the arguments presented earlier for
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Fig. 17. An example where s had an edge in X1 in the half-θ6-graph, which was removed during
the construction of G12.

following an edge in a positive cone) that w is v. As such, w must lie in X1. We also
know (from the proof of Theorem 11) that the distance along the canonical path from
s to x is at most 2 · |sv|, which is bounded by 2 · |as| since v lies in X1. In this case,
we follow the edge from x to v. Conversely, if we do not find any vertex with an edge
in C1 within a distance of 2 · |as| from s, or we do, but the endpoint w of the edge
does not lie in X1, then we can return to s and conclude that it did not have an edge
in X1 in the half-θ6-graph and therefore X1 must be empty.

If there was an edge in X1, we traveled the same distance as if we were simply
following the edge: at most 19 · |sv|. If we return to s unsuccessfully, we traveled at
most 20 · |as|: 9 times 2 · |as| during the exponential search and 2 · |as| to return to s.

Follow the edge in X0 closest to the preferred side in clockwise order. To follow
this edge, we first follow the edge to the closest vertex. If this lands us in X0, we
then follow the canonical path toward the preferred side and stop at the last vertex
on the canonical path that is in X0. If the closest is not in X0, we follow the canonical
path toward X0 and stop at the first or last vertex in X0, depending on which side of
X0 we started on. This follows the approximation path of the edge, so the distance
traveled is at most three times the length of the edge.

Routing ratio. This shows that we can simulate the stateful routing algorithm
on G12. The state we need to store in the message includes not only the preferred
side but also information for the exponential search, including distance traveled. The
exact routing ratios are as follows.

Theorem 12. Let u and w be two vertices, with w in a positive cone of u. There
exists a deterministic 1-local O(1)-memory routing algorithm on G12 with routing ratio

(i) 19 · 2 = 38 when routing from u to w,
(ii) 19 · 5/√3 = 54.848 . . . when routing from w to u.
Proof. As shown above, we can simulate every edge followed by the algorithm by

traveling at most 19 times the length of the edge. The only additional cost is incurred
in case B, when we try to follow an edge in the smaller of X1 and X2, but this edge
does not exist. In this case, we travel an additional 20 · |as|, where a is the corner
closest to s. Fortunately, this can happen at most once during the execution of the
algorithm, as it prompts the transition to case C, after which the algorithm never
returns to case B. Looking at the proof for the upper bound in section 5 (specifically,
the second case in Figure 13b), we observe that in the transition from case D to C,
there is 2 · |as| of unused potential. Since we are trying to show a routing ratio of
19 times the original, we can charge the additional 20 · |as| to the 38 · |as| of unused
potential.
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7.2. Routing in G9. In this subsection, we explain how to modify the previously
described simulation strategies so that they work for G9, where the first and last
edges are not guaranteed to be present. We discuss only those steps that rely on the
presence of these edges. To route successfully in this setting, we need to change our
model slightly. We now let every vertex store a constant amount of information in
addition to the information about its neighbors.

Follow an edge (s, v) in a positive cone. Because the first and last edges are not
always kept, we cannot guarantee that the first vertex we reach with an edge in this
positive cone is still part of the same canonical path. This means that the edge could
connect to some arbitrary vertex, far away from v. Therefore our original exponential
search solution does not work. Instead, we store one bit of information at s (per
positive cone), namely, in which direction we have to follow the canonical path to
reach the closest vertex to v. Knowing this, we just follow the canonical path in
the indicated direction until we reach a vertex with an edge in this positive cone.
This vertex must be the closest, so it gives us precisely the approximation path, and
therefore we travel at most 3 · |sv|.

Determine if there are edges in X0. In G12, this test was based on the coordinates
of the endpoints of the first and last edges. Since these might be missing in G9, we
store the coordinates of these vertices at s. This allows us to perform the check
without increasing the distance traveled.

Determine if there is an edge in X1 or X2. As in the positive routing simulation,
we now know where to go to find the closest. Therefore we simply follow the canonical
path in this direction from s and stop when we reach a vertex with an edge in the
correct positive cone, or when we have traveled 2 · |as|. If there is an edge, we follow
exactly the approximation path, giving us three times the length of the edge. If there
is no edge, we travel 2 · |as| back and forth, for a total of 4 · |as|.

Routing ratio. Since the other simulation strategies do not rely on the presence
of the first or last edges, we can now analyze the routing ratio obtained on G9.

Theorem 13. Let u and w be two vertices, with w in a positive cone of u. By
storing O(1) additional information at each vertex, there exists a deterministic 1-local
O(1)-memory routing algorithm on G9 and G12 with routing ratio

(i) 3 · 2 = 6 when routing from u to w,
(ii) 3 · 5/√3 = 8.660 . . . when routing from w to u.
Proof. The simulation strategy for G12 followed the approximation path for each

edge, except when following an edge in a positive cone. Since our new strategy
follows the approximation path there as well, our new routing ratio is only three
times the one for the half-θ6-graph. Note that this is still sufficient to charge the
additional 4 · |sa| traveled to the transition from case B to C, which has 3 · 2 · |as| of
otherwise unused potential. Since G9 is a subgraph of G12, this strategy works on
G12 as well.

8. Conclusions. We presented a competitive deterministic 1-local 0-memory
routing algorithm on the half-θ6-graph. We also presented matching lower bounds
on the routing ratio for any deterministic, k-local, 0-memory algorithm, showing that
our algorithm is optimal. Since any triangulation can be embedded as a half-θ6-graph
using Schnyder’s embedding [21], this shows that any triangulation has an embedding
that admits a competitive routing algorithm. An interesting open problem here is
whether this approach can be extended to other theta-graphs. In particular, we
recently extended the proof for the spanning ratio of the half-θ6-graph to theta-graphs
with 4k + 2 cones for integer k > 0 [7]. It would be interesting to see if it is possible
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to find optimal routing algorithms for these graphs as well.

We further extended our routing algorithm to work on versions of the half-θ6-
graph with bounded maximum degree. As far as we know, these are the first compet-
itive routing algorithms on bounded-degree plane graphs. There are several problems
here that are still open. For example, while we found a matching lower bound for
negative routing in the regular half-θ6-graph, we do not have one for the version with
bounded degree. Can we find this, or is it possible to improve the routing algorithm
further? And can we extend the algorithm to the version with maximum degree 6,
introduced by Bonichon et al. [5]?
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