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INTRODUCTION

An n-point metric space (X,D) can be represented by an n × n table specifying
the distances. Such tables arise in many diverse areas. For example, consider the
following scenario in microbiology: X is a collection of bacterial strains, and for
every two strains, one is given their dissimilarity (computed, say, by comparing
their DNA). It is difficult to see any structure in a large table of numbers, and so
we would like to represent a given metric space in a more comprehensible way.

For example, it would be very nice if we could assign to each x ∈ X a point
f(x) in the plane in such a way that D(x, y) equals the Euclidean distance of f(x)
and f(y). Such a representation would allow us to see the structure of the metric
space: tight clusters, isolated points, and so on. Another advantage would be that
the metric would now be represented by only 2n real numbers, the coordinates
of the n points in the plane, instead of

(

n
2

)

numbers as before. Moreover, many
quantities concerning a point set in the plane can be computed by efficient geometric
algorithms, which are not available for an arbitrary metric space.

This sounds too good to be generally true: indeed, there are even finite metric
spaces that cannot be exactly represented either in the plane or in any Euclidean
space; for instance, the four vertices of the graphK1,3 (a star with 3 leaves) with the
shortest-path metric (see Figure 8.0.1). However, it is possible to embed the latter
metric in a Euclidean space, if we allow the distances to be distorted somewhat.
For example, if we place the center of the star at the origin in R

3 and the leaves
at (1, 0, 0), (0, 1, 0), (0, 0, 1), then all distances are preserved approximately, up to a
factor of

√
2 (Figure 8.0.1b).

FIGURE 8.0.1

A nonembeddable metric space. a b

Approximate embeddings have proven extremely helpful for approximate solu-
tions of problems dealing with distances. For many important algorithmic problems,
they yield the only known good approximation algorithms.

The normed spaces usually considered for embeddings of finite metrics are the
spaces ℓdp, 1 ≤ p ≤ ∞, and the cases p = 1, 2,∞ play the most prominent roles.
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GLOSSARY

Metric space: A pair (X,D), where X is a set of points and D : X×X → [0,∞)
is a distance function satisfying the following conditions for all x, y, z ∈ X :

(i) D(x, y) = 0 if and only if x = y,

(ii) D(x, y) = D(y, x) (symmetry), and

(iii) D(x, y) +D(y, z) ≥ D(x, z) (triangle inequality).

Separable metric space: A metric space (X,D) containing a countable dense
set; that is, a countable set Y such that for every x ∈ X and every ε > 0 there
exists y ∈ Y with D(x, y) < ε.

Pseudometric: Like metric except that (i) is not required.

Isometry: A mapping f : X → X ′, where (X,D) and (X ′, D′) are metric spaces,
with D′(f(x), f(y)) = D(x, y) for all x, y.

(Real) normed space: A real vector space Z with a mapping ‖·‖Z : Z → [0,∞],
the norm, satisfying ‖x‖Z = 0 iff x = 0, ‖αx‖Z = |α| · ‖x‖Z (α ∈ R), and
‖x+ y‖Z ≤ ‖x‖Z + ‖y‖Z. The metric on Z is given by (x, y) 7→ ‖x− y‖Z .

ℓdp: The space R
d with the ℓp-norm ‖x‖p =

(
∑d

i=1 |xi|p
)1/p

, 1 ≤ p ≤ ∞ (where
‖x‖∞ = maxi |xi|).

Finite ℓp metric: A finite metric space isometric to a subspace of ℓdp for some d.

ℓp: For a sequence (x1, x2, . . .) of real numbers we set ‖x‖p =
(
∑∞

i=1 |xi|p
)1/p

.
Then ℓp is the space consisting of all x with ‖x‖p < ∞, equipped with the norm
‖ · ‖p. It contains every finite ℓp metric as a (metric) subspace.

Distortion: A mapping f : X → X ′, where (X,D) and (X ′, D′) are metric
spaces, is said to have distortion at most c, or to be a c-embedding, where c ≥ 1,
if there is an r ∈ (0,∞) such that for all x, y ∈ X ,

r ·D(x, y) ≤ D′(f(x), f(y)) ≤ cr ·D(x, y).

If X ′ is a normed space, we usually require r = 1
c or r = 1.

Order of congruence: A metric space (X,D) has order of congruence at most
m if every finite metric space that is not isometrically embeddable in (X,D) has
a subspace with at most m points that is not embeddable in (X,D).

8.1 THE SPACES ℓp

8.1.1 THE EUCLIDEAN SPACES ℓd
2

Among normed spaces, the Euclidean spaces are the most familiar, the most sym-
metric, the simplest in many respects, and the most restricted. Every finite ℓ2
metric embeds isometrically in ℓp for all p. More generally, we have the following
Ramsey-type result on the “universality” of ℓ2; see, e.g., [MS86]:
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Chapter 8: Low-distortion embeddings of finite metric spaces 213

THEOREM 8.1.1 Dvoretzky’s theorem (a finite quantitative version)

For every d and every ε > 0 there exists n = n(d, ε) ≤ 2O(d/ε2) such that ℓd2 can be
(1+ε)-embedded in every n-dimensional normed space.

Isometric embeddability in ℓ2 has been well understood since the classical works
of Menger, von Neumann, Schoenberg, and others (see, e.g., [Sch38]). Here is a brief
summary:

THEOREM 8.1.2

(i) (Compactness) A separable metric space (X,D) is isometrically embeddable
in ℓ2 iff each finite subspace is so embeddable.

(ii) (Order of congruence) A finite (or separable) metric space embeds isometri-
cally in ℓd2 iff every subspace of at most d+ 3 points so embeds.

(iii) For a finite X = {x0, x1, . . . , xn}, (X,D) embeds in ℓ2 iff the n×n matrix
(

D(x0, xi)
2 +D(x0, xj)

2−D(xi, xj)
2
)n

i,j=1
is positive semidefinite; moreover,

its rank is the smallest dimension for such an embedding.

(iv) (Schoenberg’s criterion) A separable (X,D) isometrically embeds in ℓ2 iff the

matrix
(

e−λD(xi,xj)
2)n

i,j=1
is positive semidefinite for all n ≥ 1, for any points

x1, x2, . . . , xn ∈ X, and for any λ > 0. (This is expressed by saying that the

functions x 7→ e−λx2

, for all λ > 0, are positive definite on ℓ2.)

Using similar ideas, the problem of finding the smallest c such that a given finite
(X,D) can be c-embedded in ℓ2 can be formulated as a semidefinite programming
problem and thus solved in polynomial time [LLR95]. For embedding into ℓd2 no
similar result is possible. It has been shown that for any constant d ≥ 1, approxi-
mating even to within a polynomial factor the minimum distortion embedding into
ℓd2 is NP-hard [MS10]

8.1.2 THE SPACES ℓd
1

GLOSSARY

Cut metric: A pseudometric D on a set X such that, for some partition X =
A∪̇B, we have D(x, y) = 0 if both x, y ∈ A or both x, y ∈ B, and D(x, y) = 1
otherwise.

Hypermetric inequality: A metric space (X,D) satisfies the (2k+1)-point hy-
permetric inequality (also called the (2k+1)-gonal inequality) if for every multi-
set A of k points and every multiset B of k+ 1 points in X ,

∑

a,a′∈AD(a, a′) +
∑

b,b′∈B D(b, b′) ≤ ∑

a∈A,b∈B D(a, b). (We get the triangle inequality for k = 1.)

Hypermetric space: A space that satisfies the hypermetric inequality for all k.

Cocktail-party graph: The complement of a perfect matching in a complete
graph K2m; also called a hyperoctahedron graph.

Half-cube graph: The vertex set consists of all vectors in {0, 1}n with an even
number of 0’s, and edges connect vectors with Hamming distance 2.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.
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Cartesian product of graphs G and H: The vertex set is V (G)×V (H), and
the edge set is {{(u, v), (u, v′)} | u ∈ V (G), {v, v′} ∈ E(H)} ∪ {{(u, v), (u′, v)} |
{u, u′} ∈ E(G), v ∈ V (H)}. The cubes are Cartesian powers of K2.

Girth of a graph: The length of the shortest cycle.

The ℓ1 spaces are important for many reasons, but considerably more compli-
cated than Euclidean spaces; a general reference here is [DL97]. Many important
and challenging open problems are related to embeddings in ℓ1 or in ℓd1.

Unlike the situation in ℓn2 , not every n-point ℓ1-metric lives in ℓn1 ; dimension
of order Θ(n2) is sometimes necessary and always sufficient to embed n-point ℓ1-
metrics isometrically (similarly for the other ℓp-metrics with p 6= 2).

The ℓ1 metrics on an n-point set X are precisely the elements of the cut cone;
that is, linear combinations with nonnegative coefficients of cut metrics on X .
Another characterization is this: A metric D on {1, 2, . . . , n} is an ℓ1 metric iff
there exist a measure space (Ω,Σ, µ) and sets A1, . . . , An ∈ Σ such that D(i, j) =
µ(Ai△Aj).

Every ℓ1 metric is a hypermetric space (since cut metrics satisfy the hypermetric
inequalities), but for 7 or more points, this condition is not sufficient. Hyperme-
tric spaces have an interesting characterization in terms of Delaunay polytopes of
lattices; see [DL97].

ISOMETRIC EMBEDDABILITY

Deciding isometric embeddability in ℓ1 is NP-hard. On the other hand, the em-
beddability of unweighted graphs, both in ℓ1 and in a Hamming cube, has been
characterized and can be tested in polynomial time. In particular, we have:

THEOREM 8.1.3
(i) An unweighted graph G embeds isometrically in some cube {0, 1}m with the

ℓ1-metric iff it is bipartite and satisfies the pentagonal inequality.

(ii) An unweighted graph G embeds isometrically in ℓ1 iff it is an isometric sub-
graph of a Cartesian product of half-cube graphs and cocktail-party graphs.

A first characterization of cube-embeddable graphs was given by Djokovic
[Djo73], and the form in (i) is due to Avis (see [DL97]). Part (ii) is from Shpectorov
[Shp93].

ORDER OF CONGRUENCE

The isometric embeddability in ℓ21 is characterized by 6-point subspaces (6 is best
possible here), and can thus be tested in polynomial time (Bandelt and Chepoi
[BC96]). The proof uses a result of Bandelt and Dress [BD92] of independent
interest, about certain canonical decompositions of metric spaces (see also [DL97]).

On the other hand, for no d ≥ 3 it is known whether the order of congruence
of ℓd1 is finite; there is a lower bound of d2 (for odd d) or d2 − 1 (for d even).

8.1.3 THE OTHER p

The spaces ℓd∞ are the richest (and thus generally the most difficult to deal with);
every n-point metric space (X,D) embeds isometrically in ℓn∞. To see this, write
X = {x1, x2, . . . , xn} and define f : X → ℓn∞ by f(xi)j = D(xi, xj).
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The other p 6= 1, 2,∞ are encountered less often, but it may be useful to know
the cases where all ℓp metrics embed with bounded distortion in ℓq: This happens
iff p = q, or p = 2, or q = ∞, or 1 ≤ q ≤ p ≤ 2. Isometric embeddings exist in all
these cases. Moreover, for 1 ≤ q ≤ p ≤ 2, the whole of ℓdp can be (1+ε) embedded

in ℓCd
q with a suitable C = C(p, q, ε) (so the dimension doesn’t grow by much); see,

e.g., [MS86]. These embeddings are probabilistic. The simplest one is ℓd2 → ℓCd
1 ,

given by x 7→ Ax for a random ±1 matrix A of size Cd×d (surprisingly, no good
explicit embedding is known even in this case).

8.2 APPROXIMATE EMBEDDINGS OF GENERAL METRICS

IN ℓp

8.2.1 BOURGAIN’S EMBEDDING IN ℓ2

The mother of most embeddings mentioned in the next few sections, from both
historical and “technological” points of view, is the following theorem.

THEOREM 8.2.1 Bourgain [Bou85]

Any n-point metric space (X,D) can be embedded in ℓ2 (in fact, in every ℓp) with
distortion O(log n).

We describe the embedding, which is constructed probabilistically. We set
m = ⌊log2 n⌋ and q = ⌊C logn⌋ (C a suitable constant) and construct an embedding
in ℓmq

2 , with the coordinates indexed by i = 1, 2, . . . ,m and j = 1, 2, . . . , q. For
each such i, j, we select a subset Aij ⊆ X by putting each x ∈ X into Aij with
probability 2−j , all the random choices being mutually independent. Then we set

f(x)ij = D(x,Aij). We thus obtain an embedding in ℓ
O(log2 n)
2 (Bourgain’s original

proof used exponential dimension; the possibility of reducing it was noted later),
and it can be shown that the distortion is O(log n) with high probability.

This yields an O(n2 logn) randomized algorithm for computing the desired
embedding. The algorithm can be derandomized (preserving the polynomial time
and the dimension bound) using the method of conditional probabilities; this result
seems to be folklore. Alternatively, it can be derandomized using small sample
spaces [LLR95]; this, however, uses dimension Θ(n2). Finally, as was remarked
above, an embedding of a given space in ℓ2 with optimal distortion can be computed
by semidefinite programming.

The O(log n) distortion for embedding a general metric in ℓ2 is tight [LLR95]
(and similarly for ℓp, p < ∞ fixed). Examples of metrics that cannot be embedded
any better are the shortest-path metrics of constant-degree expanders. (An n-vertex
graph is a constant-degree expander if all degrees are bounded by some constant
r and each subset of k vertices has at least βk outgoing edges, for 1 ≤ k ≤ n

2 and
for some constant β > 0 independent of n.)

Another interesting lower bound is due to Linial et al. [LMN02]: The shortest-
path metric of any k-regular graph (k ≥ 3) of girth g requires Ω(

√
g ) distortion for

embedding in ℓ2.
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8.2.2 NEGATIVE TYPE METRICS

We say that a metric space (X,D) is of negative type if there exists a mapping
f : X → L2 such that ‖f(x)− f(y)‖22 = D(x, y), for all x, y ∈ X .

In [ARV09] the Goemans-Linial semidefinite programming relaxation of the
sparsest cut problem was used to obtain a O(

√
logn)-approximation for the uni-

form case of the problem. Building on this work and a previous bound from
[CGR05], it was shown in [ALN08] that any n-point metric space of negative type
admits an embedding into ℓ1 with distortion O(

√
logn log logn). This implies a

O(
√
logn log logn)-approximation for the general sparsest cut problem. In [CKN09]

it was shown that there exist n-point metric spaces of negative type that require
distortion (logn)Ω(1) to be embedded into ℓ1. This also implies that the integral-
ity of the Goemans-Linial semidefinite programming relaxation is (logn)Ω(1). Very
recently, that result was improved to Ω(

√
logn), matching the upper bound [NY17].

8.2.3 THE DIMENSION OF EMBEDDINGS IN ℓ∞

If we want to embed all n-point metrics in ℓd∞, there is a tradeoff between the di-
mension d and the worst-case distortion. The following result was proved in [Mat96]
by adapting Bourgain’s technique.

THEOREM 8.2.2

For an integer b > 0 set c = 2b−1. Then any n-point metric space can be embedded
in ℓd∞ with distortion c, where d = O(bn1/b logn).

An almost matching lower bound can be proved using graphs without short
cycles, an idea also going back to [Bou85]. Let m(g, n) be the maximum possible
number of edges of an n-vertex graph of girth g + 1. For every fixed c ≥ 1 and
integer g > c there exists an n-point metric space such that any c-embedding in
ℓd∞ has d = Ω(m(g, n)/n) [Mat96]. The proof goes by counting: Fix a graph G0

witnessingm(g, n), and let G be the set of graphs (considered with the shortest-path
metric) that can be obtained from G0 by deleting some edges. It turns out that if
G,G′ ∈ G are distinct, then they cannot have “essentially the same” c-embeddings
in ℓd∞, and there are only “few” essentially different embeddings in ℓd∞ if d is small.

It is easy to show that m(g, n) = O(n1+1/⌊g/2⌋) for all g, and this is conjectured
to be the right order of magnitude [Erd64]. This has been verified for g ≤ 7 and
for g = 10, 11, while only worse lower bounds are known for the other values of
g (with exponent roughly 1 + 4/3g for g large). Whenever the conjecture holds
for some g = 2b − 1, the above theorem is tight up to a logarithmic factor for the
corresponding b. Unfortunately, although explicit constructions of graphs of a given
girth with many edges are known, the method doesn’t provide explicit examples of
badly embeddable spaces.

For special classes of metrics improved bounds on the dimension are possible.
The shortest path metric of any graph that excludes some fixed minor admits a

constant-distortion embedding into ℓ
O(logn)
∞ [KLMN05].

DISTANCE ORACLES

An interesting algorithmic result, conceptually resembling the above theorem, was
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obtained by Thorup and Zwick [TZ01]. They showed that for an integer b > 0,
every n-point metric space can be stored in a data structure of size O(n1+1/b)
(with preprocessing time of the same order) so that, within time O(b), the distance
between any two points can be approximated within a multiplicative factor of 2b−1.
Mendel and Naor [MN06] have obtained a data structure for the above problem of
size O(n1+1/b), with query time O(1) that approximates the distance between any
two points within a multiplicative factor of O(b).

LOW DIMENSION

The other end of the tradeoff between distortion and dimension d, where d is fixed
(and then all ℓp-norms on R

d are equivalent up to a constant) was investigated in
[Mat90]. For all fixed d ≥ 1, there are n-point metric spaces requiring distortion
Ω
(

n1/⌊(d+1)/2⌋) for embedding in ℓd2 (for d = 2, an example is the shortest-path
metric of K5 with every edge subdivided n/10 times). On the other hand, ev-

ery n-point space O(n)-embeds in ℓ12 (the real line), and O(n2/d log3/2 n)-embeds
in ℓd2, d ≥ 3.

8.2.4 THE JOHNSON-LINDENSTRAUSS LEMMA: FLATTENING IN ℓ2

The n-point ℓ2 metric with all distances equal to 1 requires dimension n − 1 for
isometric embedding in ℓ2. A somewhat surprising and extremely useful result
shows that, in particular, this metric can be embedded in dimension only O(log n)
with distortion close to 1.

THEOREM 8.2.3 Johnson and Lindenstrauss [JL84]

For every ε > 0, any n-point ℓ2 metric can be (1+ε)-embedded in ℓ
O(logn/ε2)
2 .

There is an almost matching lower bound for the necessary dimension, due to
Alon (see [Mat02]): Ω(logn/(ε2 log(1/ε))). For the special case of linear maps, a
matching Ω(min{n, logn/ε2}) lower bound has been obtained [LN16].

All known proofs (see, e.g., [Ach01] for references and an insightful discussion)
first place the metric under consideration in ℓn2 and then map it into ℓd2 by a random
linear map A : ℓn2 → ℓd2. Here A can be a random orthogonal projection (as in
[JL84]). It can also be given by a random n×d matrix with independent N(0, 1)
entries [IM98], or even one with independent uniform random ±1 entries. The proof
in the last case, due to [Ach01], is considerably more difficult than the previous ones
(which use spherically symmetric distributions), but this version has advantages in
applications.

An embedding as in the theorem can be computed deterministically in time
O(n2d(logn+ 1/ε)O(1)) [EIO02] (also see [Siv02]).

The aforementioned embeddings use random dense n × d matrices A, which
means that mapping a point p into Ap takes rectangular (i.e., Θ(nd)) time. In
order to reduce the running time several approaches were proposed. The Fast
Johnson-Lindenstrauss transform approach [AC06, AL13, KW11] uses the product
of a diagonal matrix, a Fourier matrix and a projection matrix, which makes it
possible to evaluate the matrix-vector product Ap in sub-rectangular time. In
particular, the algorithm of [KW11] runs in O(n logn) time, albeit the reduced
dimension d is O(log(n) log4(d)/ε2).

Another approach to faster dimensionality reduction is Feature Hashing, also
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known as the Sparse Johnson-Lindenstrauss transform [WDL+09, DKS10, KN14].
Here, the speedup is achieved by showing that one can make the matrix A sparse
without sacrificing the bound on the reduced dimension. In particular [KN14] shows
a distribution over n× d matrices A that have only εnd non-zeros and achieve the
same bound for d as given in Theorem 8.2.3.

8.2.5 IMPOSSIBILITY OF DIMENSIONALITY REDUCTION IN ℓ1

It has been shown that no analogue of the Johnson–Lindenstrauss result holds in
ℓ1. The first result of this type was obtained by Brinkman and Charikar [BC05] and
was later simplified by Lee and Naor [LN04]. The best known lower bound is due
to Andoni et al. [ACNN11] who showed that for any ε > 0 and n > 0 there exist
some n-point subset X of ℓ1 such that any embedding of X into ℓ1 with distortion
1 + ε requires dimension at least n1−O(1/ log(1/ε).

8.2.6 VOLUME-RESPECTING EMBEDDINGS

Feige [Fei00] introduced the notion of volume-respecting embeddings in ℓ2, with
impressive algorithmic applications. While the distortion of a mapping depends
only on pairs of points, the volume-respecting condition takes into account the
behavior of k-tuples. For an arbitrary k-point metric space (S,D), we set Vol(S) =
supnonexpandingf : S→ℓ2 Evol(f(S)), where Evol(P ) is the (k−1)-dimensional volume
of the convex hull of P (in ℓ2). Given a nonexpanding f : X → ℓ2 for some metric
space (X,D) with |X | ≥ k, we define the k-distortion of f to be

sup
S⊆X,|S|=k

(

Vol(S)

Evol(f(S))

)1/(k−1)

.

If the k-distortion of f is ∆, we call f (k,∆)-volume-respecting.
If f : X → ℓ2 is an embedding scaled so that it is nonexpanding but just so,

the 2-distortion coincides with the usual distortion. But note that for k > 2, the
isometric “straight” embedding of a path in ℓ2 is not volume-respecting at all. In
fact, it is known that for any k > 2, no (k, o(

√
logn))-volume-respecting embedding

of a line exists [DV01].
Extending Bourgain’s technique, Feige proved that for every k > 2, every n-

point metric space has a (k,O(log n+
√
k logn log k))-volume-respecting embedding

in ℓ2. Magen and Zouzias [MZ08] have obtained volume-respecting dimensionality
reduction for finite subsets of Euclidean space. They show that any n-point subset
of ℓ2 admits a O(k, 1 + ε)-volume-respecting embedding into ℓd2, for some d =
O(max{k/ε, ε−2 logn}).

8.3 APPROXIMATE EMBEDDING OF SPECIAL METRICS

IN ℓp

GLOSSARY

G-metric: Let G be a class of graphs and let G ∈ G. Each positive weight
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function w : E(G) → (0,∞) defines a metric Dw on V (G), namely, the shortest-
path metric, where the length of a path is the sum of the weights of its edges.
A metric space is a G-metric if it is isometric to a subspace of (V (G), Dw) for
some G ∈ G and some w.

Tree metric, planar-graph metric: A G-metric for G, the class of all trees or
all planar graphs, respectively.

Minor: A graph G is a minor of a graph H if it can be obtained from H by
repeated deletions of edges and contractions of edges.

Doubling metric: A metric (X,D) such that for all r > 0 any ball of radius r
can be covered by a constant number of balls of radius r/2.

8.3.1 TREE METRICS, PLANAR-GRAPH METRICS, AND FORBIDDEN

MINORS

A major research direction has been improving Bourgain’s embedding in ℓ2 for
restricted families of metric spaces.

TREE METRICS

It is easy to show that any tree metric embeds isometrically in ℓ1. Any n-point tree

metric can also be embedded isometrically in ℓ
O(log n)
∞ [LLR95]. For ℓp embeddings,

the situation is rather delicate:

THEOREM 8.3.1

Distortion of order (log logn)min(1/2,1/p) is sufficient for embedding any n-vertex
tree metric in ℓp (p ∈ (1,∞) fixed) [Mat99], and it is also necessary in the worst
case (for the complete binary tree; [Bou86]).

Gupta [Gup00] proved that any n-point tree metric O(n1/(d−1))-embeds in
ℓd2 (d ≥ 1 fixed), and for d = 2 and trees with unit-length edges, Babilon et
al. [BMMV02] improved this to O(

√
n ). Bǎdoiu et al. [BCIS06] have shown that

any n-point ultrametric O(n1/d)-embeds in ℓd2.

PLANAR-GRAPH METRICS AND OTHER CLASSES WITH A
FORBIDDEN MINOR

The following result was proved by Rao, building on the work of Klein, Plotkin,
and Rao.

THEOREM 8.3.2 Rao [Rao99]

Any n-point planar-graph metric can be embedded in ℓ2 with distortion O(
√
logn ).

More generally, let H be an arbitrary fixed graph and let G be the class of all graphs
not containing H as a minor; then any n-point G-metric can be embedded in ℓ2 with
distortion O(

√
logn ).

This bound is tight even for series-parallel graphs (no K4 minor) [NR02]; the
example is obtained by starting with a 4-cycle and repeatedly replacing each edge
by two paths of length 2.

A challenging conjecture, one that would have significant algorithmic conse-
quences, states that under the conditions of Rao’s theorem, all G-metrics can be
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c-embedded in ℓ1 for some c depending only on G (but not on the number of points).
Apparently, this conjecture was first published in [GNRS04], where it was verified
for the forbidden minors K4 (series-parallel graphs) and K2,3 (outerplanar graphs).
It has also been verified for graphs that exclude the 4-wheel [CJLV08] and for graphs
of bounded pathwidth (equivalently, for graphs that exclude some forest) [LS13].
It has also been shown that the conjecture can be reduced to the conjunction of
two apparently simpler problems: the special case of planar graphs (also known as
the planar embedding conjecture) and the so-called k-sum conjecture which asserts
that constant-distortion embeddability into ℓ1 is closed under bounded clique-sums
[LS09]. The latter conjecture has been verified special case of edge-sums over graphs
of bounded size [LP13].

DOUBLING METRICS

It has been shown by Gupta et al. [GKL03] that any n-point doubling metric admits
a O(

√
logn)-embedding into ℓ2 and that there exists a doubling metric that requires

distortion Ω(
√
logn). Since ℓ2 embeds into ℓ1 isometrically, the above upper bound

also holds for embedding into ℓ1. It has been shown that there exists an n-point
doubling metric that requires distortion Ω(

√

log n/ log logn) to be embedded into
ℓ1 [LS11].

8.3.2 METRICS DERIVED FROM OTHER METRICS

In this section we focus on metrics derived from other metrics, e.g., by defining a
distance between two sets or sequences of points from the underlying metric.

GLOSSARY

Uniform metric: For any set X , the metric (X,D) is uniform if D(p, q) = 1 for
all p 6= q, p, q ∈ X .

Hausdorff distance: For a metric space (X,D), the Hausdorff metric H on the

set 2X of all subsets of X is given by H(A,B) = min( ~H(A,B), ~H(B,A)), where
~H(A,B) = supa∈A infb∈B D(a, b).

Earth-mover distance: For a metric space (X,D) and an integer d ≥ 1, the
earth-mover distance of two d-element sets A,B ⊆ X is the minimum weight of a
perfect matching between A and B; that is, minbijectiveπ : A→B

∑

a∈AD(a, π(a)).

Levenshtein distance (or edit distance): For a metric space M = (Σ, D), the
distance between two strings w,w′ ∈ Σ∗ is the minimum cost of a sequence of
operations that transforms w into w′. The allowed operations are: character
insertion (of cost 1), character deletion (of cost 1), or replacement of a symbol
a by another symbol b (of cost D(a, b)), where a, b ∈ Σ. The total cost of the
sequence of operations is the sum of all operation costs.

Fréchet distance: For a metric space M = (X,D), the Fréchet distance (also
called the dogkeeper’s distance) between two functions f, g : [0, 1] → X is
defined as

inf
π : [0,1]→[0,1]

sup
t∈[0,1]

D(f(t), g(π(t)))

where π is continuous, monotone increasing, and such that π(0) = 0, π(1) = 1.
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HAUSDORFF DISTANCE

The Hausdorff distance is often used in computer vision for comparing geometric
shapes, represented as sets of points. However, even computing a single distance
H(A,B) is a nontrivial task. As noted in [FCI99], for any n-point metric space
(X,D), the Hausdorff metric on 2X can be isometrically embedded in ℓn∞.

The dimension of the host norm can be further reduced if we focus on em-
bedding particular Hausdorff metrics. In particular, let Hs

M be the Hausdorff
metric over all s-subsets of M . Farach-Colton and Indyk [FCI99] showed that
if M = ({1, . . . ,∆}k, ℓp), then Hs

M can be embedded in ℓd
′

∞ with distortion 1 + ε,
where d′ = O(s2(1/ε)O(k) log∆). A different tradeoff was obtained in [BS16], where
it is shown that forM = ({1, . . . ,∆}k, ℓp), where k, s are constant, Hs

M embeds into

ℓ
f(k,s)
∞ with g(k, s) distortion for some functions f and g. For a general (finite) met-

ric spaceM = (X,D) they show thatHs
M can be embedded in ℓ

sO(1) |X|α log ∆
∞ for any

α > 0 with constant distortion, where ∆ = (minp6=q∈X D(p, q))/(maxp,q∈X D(p, q)).

EARTH-MOVER DISTANCE (EMD)

A very interesting relation between embedding EMD in normed spaces and em-
beddings in probabilistic trees (discussed below in Section 8.4.1) was discovered
in [Cha02]: If a finite metric space can be embedded in a convex combination of
dominating trees with distortion c, then the EMD over it can be embedded in ℓ1
with distortion O(c). Consequently, the EMD over subsets of ({1, . . . ,∆}k, ℓp) can
be embedded in ℓ1 with distortion O(k log∆). Lower bounds have been proven
in [KN06, NS07].

LEVENSHTEIN DISTANCE AND ITS VARIANTS

The Levenshtein distance is used in text processing and computational biology.
The best algorithm computing the Levenshtein distance of two strings w,w′, even
approximately, has running time of order |w|·|w′| (for a constant-size Σ). In the sim-
plest (but nevertheless quite common) case of the uniform metric over Σ = {0, 1},
Levenshtein distance over strings of length d admits a 2O(

√
log d log log d)-embedding

into ℓ1 [OR07]. A lower bound of Ω(log d) has also been obtained for this case
[KR09, KN06].

If we modify the definition of the distance by permitting the movement of an
arbitrarily long contiguous block of characters as a single operation, and if the un-
derlying metric is uniform, then the resulting block-edit metric can be embedded
in ℓ1 with distortion O(log l · log∗ l), where l is the length of the embedded strings
(see [MS00, CM02] and references therein). The modified metric has applications
in computational biology and in string compression. The embedding of a given
string can be computed in almost linear time, which yields a very fast approxima-
tion algorithm for computing the distance between two strings (the exact distance
computation is NP-hard!).

FRÉCHET METRIC

The Fréchet metric is an interesting metric measuring the distances between two
curves. From the applications perspective, it is interesting to investigate the case
where M = ℓk2 and f, g are continuous, closed polygonal chains, consisting of (say)
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at most d segments each. Denote the set of such curves by Ck
d . It is not known

whether Ck
d , under Fréchet distance, can be embedded in ℓ∞ with finite dimension

(for infinite dimension, an isometric embedding follows from the universality of the
ℓ∞ norm). On the other hand, it is easy to check that for any bounded set S ⊂ ℓd∞,
there is an isometry f : S → C1

3d.

8.3.3 OTHER SPECIAL METRICS

GLOSSARY

(1, 2)-B metric: A metric space (X,D) such that for any x ∈ X the number of
points y with D(x, y) = 1 is at most B, and all other distances are equal to 2.

Transposition distance: The (unfortunately named) metric DT on the set of
all permutations of {1, 2, . . . , n}; DT (π1, π2) is the minimum number of moves of
contiguous subsequences to arbitrary positions needed to transform π1 into π2.

BOUNDED DISTANCE METRICS

Trevisan [Tre01] considered approximate embeddings of (1, 2)-B metrics in ℓdp (in a
sense somewhat different from low-distortion embeddings). Guruswami and Indyk

[GI03] proved that any (1, 2)-B metric can be isometrically embedded in ℓ
O(B logn)
∞ .

PERMUTATION METRICS

It was shown in [CMS01] that DT can be O(1)-embedded in ℓ1; similar results
were obtained for other metrics on permutations, including reversal distance and
permutation edit distance.

8.4 APPROXIMATE EMBEDDINGS IN RESTRICTED MET-
RICS

GLOSSARY

Dominating metric: Let D,D′ be metrics on the same set X . Then D′ domi-
nates D if D(x, y) ≥ D′(x, y) for all x, y ∈ X .

Convex combination of metrics: Let X be a set, T1, T2, . . . , Tk metrics on
it, and α1, . . . , αk nonnegative reals summing to 1. The convex combination of
the Ti (with coefficients αi) is the metric D given by D(x, y) =

∑k
i=1 αiTi(x, y),

x, y ∈ X .

Hierarchically well-separated tree (k-HST): A 1-HST is exactly an ultra-
metric; that is, the shortest-path metric on the leaves of a rooted tree T (with
weighted edges) such that all leaves have the same distance from the root. For
a k-HST with k > 1 we require that, moreover, ∆(v) ≤ ∆(u)/k whenever v is
a child of u in T , where ∆(v) denotes the diameter of the subtree rooted at v
(w.l.o.g. we may assume that each non-leaf has degree at least 2, and so ∆(v)
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equals the distance of v to the nearest leaves). Warning: This is a newer
definition introduced in [BBM06]. Older papers, such as [Bar96, Bar98], used
another definition, but the difference is merely technical, and the notion remains
essentially the same.

8.4.1 PROBABILISTIC EMBEDDINGS IN TREES

A convex combination D =
∑r

i=1 αiTi of some metrics T1, . . . , Tr on X can be
thought of as a probabilistic metric (this concept was suggested by Karp).
Namely, D(x, y) is the expectation of Ti(x, y) for i ∈ {1, 2, . . . , r} chosen at random
according to the distribution given by the αi. Of particular interest are embed-
dings in convex combinations of dominating metrics. The domination requirement
is crucial for many applications. In particular, it enables one to solve many prob-
lems over the original metric (X,D) by solving them on a (simple) metric chosen
at random from T1, . . . , Tr according to the distribution defined by the αi.

The usefulness of probabilistic metrics comes from the fact that a sum of metrics
is much more powerful than each individual metric. For example, it is not difficult to
show that there are metrics (e.g., cycles [RR98, Gup01]) that cannot be embedded
in tree metrics with o(n) distortion. In contrast, we have the following result:

THEOREM 8.4.1 Fakcharoenphol, Rao, and Talwar [FRT03]

Let (X,D) be any n-point metric space. For every k > 1, there exist a natural
number r, k-HST metrics T1, T2, . . . , Tr on X, and coefficients α1, . . . , αr > 0 sum-
ming to 1, such that each Ti dominates D and the (identity) embedding of (X,D)
in (X,D), where D =

∑r
i=1 αiTi, has distortion O(k logn).

The first result of this type was obtained by Alon et al [AKPW95]. Their em-

bedding has distortion 2O(
√
logn log logn). A few years later Bartal [Bar96] improved

the distortion bound considerably, to O(log2 n) and later even to O(log n log logn)
[Bar98]. Finally, Fakcharoenphol, Rao, and Talwar [FRT03] obtained an embedding
with distortion O(log n). This embeddings uses convex combination of very simple
tree metrics (i.e., HST’s), which further simplifies the design of algorithms. The
O(log n) distortion is the best possible in general (since any convex combination
of tree metrics embeds isometrically in ℓ1). Embedding the

√
n × √

n grid into a
convex combination of tree metrics requires distortion Ω(logn) [AKPW95].

The constructions in [Bar96, Bar98, FRT03] generate trees with Steiner nodes
(i.e., nodes that do not belong to X). However, one can get rid of such nodes
in any tree while increasing the distortion by at most 8 [Gup01]. A lower bound
of 8 − o(1) on the distortion has also been obtained [CXKR06]. The problem of
removing Steiner nodes has also been considered for the case of general graphs. It
has been shown that for any graphG with edge weights w and T ⊆ V (G) there exists
a some graph G′ with edge weights w′ and V (G) = T such that G′ is isomorphic
to a minor of G and for all u, v ∈ T , Dw(u, v) ≤ Dw′(u, v) ≤ O(log5 |T |)Dw(u, v)
[KKN15].

An interesting extra feature of the construction of Alon et al. mentioned above
is that if the metric D is given as the shortest-path metric of a (weighted) graph
G on the vertex set X , then all the Ti are spanning trees of this G. None of the
constructions in [Bar96, Bar98, FRT03] share this property. However, more recent
work [EEST08] showed an embedding with distortion O(log2 n log logn), which was
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later improved to O(log n log logn(log log logn)3) [ABN08].
The embedding algorithms in Bartal’s papers [Bar96, Bar98] are randomized

and run in polynomial time. A deterministic algorithm for the same problem was
given in [CCG+98]. The latter algorithm constructs a distribution over O(n logn)
trees (the number of trees in Bartal’s construction was exponential in n).

Probabilistic embeddings into other classes of graph metrics have also been
considered. It has been shown that the metric of any graph of genus g > 0 admits
an embedding into a convex combination of planar graph metrics with distortion
O(log(g+1)) [Sid10]. Similarly, the metric of any graph of bounded genus and with
a bounded number of apices admits a O(1)-embedding into a convex combination of
planar graph metrics [LS09]. In contrast, it has been shown that for any k ≥ 2 there
exist graphs of treewidth k+1 such that any embedding into a convex combination
of graphs of treewidth k has distortion Ω(log n) [CJLV08].

For general graphs the following probabilistic embedding has also been ob-
tained: Let G be a graph with edge weights w and let T ⊆ V (G). Then there exists
a O(log n log logn)-embedding of (T,Dw) into a convex combination of graph met-
rics H1, . . . , Hr on T where each Hi is minor of G [EGK+10].

8.4.2 RAMSEY-TYPE THEOREMS

Many Ramsey-type questions can be asked in connection with low-distortion em-
beddings of metric spaces. For example, given classes X and Y of finite metric
spaces, one can ask whether for every n-point space Y ∈ Y there is an m-point
X ∈ X such that X can be α-embedded in Y , for given n,m, α.

Important results were obtained in [BBM06], and later greatly improved and
extended in [BLMN03], for X the class of all k-HST and Y the class of all finite
metric spaces; they were used for a lower bound in a significant algorithmic problem
(metrical task systems). Let us quote some of the numerous results of Bartal et al.:

THEOREM 8.4.2 Bartal, Linial, Mendel, and Naor [BLMN03]

Let RUM(n, α) denote the largest m such that for every n-point metric space Y there
exists an m-point 1-HST (i.e., ultrametric) that α-embeds in Y , and let R2(n, α)
be defined similarly with “ultrametric” replaced with “Euclidean metric.”

(i) There are positive constants C,C1, c such that for every α > 2 and all n,

n1−C1(logα)/α ≤ RUM(n, α) ≤ R2(n, α) ≤ Cn1−c/α.

(ii) (Sharp threshold at distortion 2) For every α > 2, there exists c(α) > 0 such
that R2(n, α) ≥ RUM(n, α) ≥ nc(α) for all n, while for every α ∈ (1, 2), we
have c′(α) log n ≤ RUM(n, α) ≤ R2(n, α) ≤ 2 logn + C′(α) for all n, with
suitable positive c′(α) and C′(α).

For embedding a k-HST in a given space, one can use the fact that every
ultrametric is k-equivalent to a k-HST. For an earlier result similar to the second
part of (ii), showing that the largest Euclidean subspace (1+ε)-embeddable in a
general n-point metric space has size Θ(logn) for all sufficiently small fixed ε > 0,
see [BFM86].
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TABLE 8.4.1 A summary of approximate embeddings

FROM TO DISTORTION REFERENCE

any ℓp, 1 ≤ p < ∞ O(logn) [Bou85]

constant-degree expander ℓp, p < ∞ fixed Ω(logn) [LLR95]

k-reg. graph, k ≥ 3, girth g ℓ2 Ω(
√
g ) [LMN02]

any ℓ
O(bn1/b log n)
∞ 2b−1, b=1, 2, . . . [Mat96]

some Ω(n1/b)-dim’l. 2b−1, b=1, 2, . . . [Mat96]
normed space (Erdős’s conj.!)

any ℓ11 Θ(n) [Mat90]

any ℓdp, d fixed O(n2/d log3/2 n), [Mat90]
Ω
(

n1/⌊(d+1)/2⌋)

ℓ2 metric ℓ
O(logn/ε2)
2 1 + ε [JL84]

ℓ1 metric ℓn
1−O(1/ log(1/ε))

1 1 + ε [ACNN11]

planar or forbidden minor ℓ2 O(
√
logn ) [Rao99]

series-parallel ℓ2 Ω(
√
logn ) [NR02]

planar or forbidden minor ℓ
O(logn)
∞ O(1) [KLMN05]

outerplanar or series-parallel ℓ1 O(1) [GNRS04]

tree ℓ1 1 (folklore)

tree ℓ
c(ε) logn
1 1 + ε [LMM13]

bounded pathwidth ℓ1 O(1) [LS09]

tree ℓ2 Θ((log logn)1/2) [Bou86, Mat99]

tree ℓd2 O(n1/(d−1)) [Gup00]

outerplanar, unit edges ℓ22 Θ(n1/2) [BMMV02, BDHM07]

planar ℓ22 Ω(n2/3) [BDHM07]

ultrametric ℓd2 O(n1/d) [BCIS06]

doubling metric ℓ2 Θ(
√
logn) [GKL03]

doubling metric ℓ1 Ω(
√

logn/ log logn) [LS11]

Hausdorff metric over (X,D) ℓ
|X|
∞ 1 [FCI99]

Hausd. over s-subsets of (X,D) ℓ
sO(1)|X|α log ∆
∞ c(α) [FCI99]

Hausd. over s-subsets of ℓkp ℓ
s2(1/ε)O(k) log∆
∞ 1 + ε [FCI99]

Hausd. over s-subsets of ℓkp ℓ
f(k,s)
∞ g(k, s) [BS16]

EMD over (X,D) ℓ1 O(log |X|) [Cha02]

EMD over {0 . . . n}2 ℓ1 Ω(
√
logn) [NS07]

EMD over {0, 1}k ℓ1 Ω(k) [KN06]

Levenshtein metric over {0, 1}d ℓ1 2O(
√
log d log log d) [OR07]

Levenshtein metric over {0, 1}d ℓ1 Ω(log d) [KR09]

block-edit metric over Σd ℓ1 O(log d · log∗ d) [MS00, CM02]

(1,2)-B metric ℓ
O(B log n)
∞ 1 [GI03];

for ℓp cf. [Tre01]

any convex comb. of O(logn) [Bar98, FRT03]
dom. trees (HSTs)

genus-g graph convex comb. of O(log(g + 1))
planar graphs [Sid10]

any convex comb. of O(logn log logn(log log logn)3) [ABN08]
spanning trees
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8.4.3 APPROXIMATION BY SPARSE GRAPHS

GLOSSARY

t-Spanner: A subgraph H of a graph G (possibly with weighted edges) is a t-
spanner of G if DH(u, v) ≤ t ·DG(u, v) for every u, v ∈ V (G).

Sparse spanners are useful as a more economic representation of a given graph
(note that if H is a t-spanner of G, then the identity map V (G) → V (H) is a
t-embedding).

THEOREM 8.4.3 Althöfer et al. [ADD+93]

For every integer t ≥ 2, every n-vertex graph G has a t-spanner with at most m(t, n)
edges, where m(g, n) = O(n1+1/⌊g/2⌋) is the maximum possible number of edges of
an n-vertex graph of girth g + 1.

The proof is extremely simple: Start with empty H , consider the edges of G
one by one from the shortest to the longest, and insert each edge into the current
H unless it creates a cycle with at most t edges. It is also immediately seen that
the bound m(t, n) is the best possible in the worst case.

Rabinovich and Raz [RR98] proved that there are (unweighted) n-vertex graphs
G that cannot be t-embedded in graphs (possibly weighted) with fewer than
m(Ω(t), n) edges (for t sufficiently large and n sufficiently large in terms of t).
Their main tool is the following lemma, proved by elementary topological consider-
ations: If H is a simple unweighted connected n-vertex graph of girth g and G is a
(possibly weighted) graph on at least n vertices with χ(G) < χ(H), then H cannot
be c-embedded in G for c < g/4−3/2; here χ(G) denotes the Euler characteristic
of a graph G, which, for G connected, equals |E(G)| − |V (G)| + 1.

Euclidean spanners are spanners of the complete graph on a given point set in ℓd2
with edge weights given by the Euclidean distances. Many papers were devoted to
computing sparse Euclidean spanners in small (fixed) dimensions. A strong result,
subsuming most of the previous work, is due to Arya et al. [ADM+95]: For any
fixed ε > 0 and d > 0 and for any n-point set in ℓd2, a (1 + ε)-spanner of maximum
degree O(1) can be computed in O(n logn) time. Improved spanner constructions
have also been obtained in Euclidean space of arbitrary dimension: Any n-point
set in ℓ2 admits a O(

√
logn)-spanner with O(n log n log logn) edges [HPIS13].

8.5 OPEN PROBLEMS AND WORK IN PROGRESS

Since the first edition of this chapter (2002) many of the problems in the area of
low-distortion embeddings of metric spaces have been resolved and have given rise
to several new algorithmic tools. Many of the most challenging problems remain
open. Instead of stating open problems here, we refer to a list compiled by the
second author [MN11] which is available on the Web.
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8.6 SOURCES AND RELATED MATERIAL

Discrete metric spaces have been studied from many different points of view, and
the area is quite wide and diverse. The low-distortion embeddings treated in this
chapter constitute only one particular (although very significant) direction. For
recent results in some other directions the reader may consult [Cam00, DDL98,
DD96], for instance. For more detailed overviews of the topics surveyed here, with
many more references, the reader is referred to [Mat02][Chapter 15] (including
proofs of basic results) and [Ind01] (with emphasis on algorithmic applications).
Approximate embeddings of normed spaces are treated, e.g., in [MS86]. A general
reference for isometric embeddings, especially embeddings in ℓ1, is [DL97].

RELATED CHAPTERS

Chapter 32: Proximity algorithms
Chapter 43: Nearest neighbors in high-dimensional spaces
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