Exploring Unknown Environments with Obstacles

Susanne Albers* Klaus Kursawe! Sven Schuierer?

Abstract

We study exploration problems where a robot has to construct a complete map of an unknown
environment using a path that is as short as possible.

In the first problem setting we consider, a robot has to explore n rectangles. We show that
no deterministic or randomized online algorithm can be better than Q(/n)-competitive, solving
an open problem by Deng, Kameda and Papadimitriou [5]. We also generalize this bound to the
problem of exploring three-dimensional rectilinear polyhedra without obstacles.

In the second problem setting we study, a robot has to explore a grid graph with obstacles
in a piecemeal fashion. The piecemeal constraint was defined by Betke, Rivest and Singh [3] and
implies that the robot has to return a start node every so often. Betke et al. gave an efficient algo-
rithm for exploring grids with rectangular obstacles. We present an efficient strategy for piecemeal
exploration of grids with arbitrary obstacles.

1 Introduction

In robot exploration problems, a robot has to construct a complete map of an unknown environment
using a path that is as short as possible. Many geometric and graph theoretic versions of this problem
have been studied in the past [1, 2, 3, 4, 5, 6, 8, 9, 10, 11]. A general problem setting was introduced
by Deng, Kameda and Papadimitriou [5]. The robot is placed in a room with obstacles. The exterior
wall of the room as well as the obstacles are modeled by simple polygons. Figure 1 shows an example
in which the room is a rectangle and all obstacles are rectilinear. The robot has 360° vision. Its task
is to move through the scene so that it sees all parts of the room. More precisely, every point in the
room must be visible from some point on the path traversed. The problem is interesting for several
polygon types (general, rectilinear, convex, rectangular). Even the case that no obstacles are placed
in the room has been the subject of extensive studies [5, 8, 9, 11].

Given a scene S, let L4(S) be the length of the path traversed by algorithm A to explore S. Since A
does not know S in advance it is also referred to as an online algorithm. Let Lopr(S) be the length of
the path of an optimum algorithm that knows the scene in advance. Following Sleator and Tarjan [13]
we call an online exploration algorithm A c-competitive if for all scenes S, L(S) < ¢- Lopr(S). Here
we assume that A is a deterministic algorithm.

In the scenario above it is assumed that the robot can see an infinite range as long as no obstacle
or exterior wall blocks the view. However, in practice, a robot’s sensors can often scan only a distance
of a few meters. This situation can be modeled by adding a grid to the scene, as shown in Figure 2,
and requiring that the robot moves on the nodes and vertices of the grid. A node in the grid models

*Max-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany. Email: albers@mpi-sb.mpg.de
tMax-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany. Email: kursawe@mpi-sb.mpg.de
Hnstitut fiir Informatik, Am Flughafen 17, Geb. 051, D-79110 Freiburg, Germany. Email:

schuiere@informatik.uni-freiburg.de

Tl
1.

Figure 1: A sample scene Figure 2: A sample scene with a grid

=}

the vicinity that the robot can see at a given point. Now the robot has to explore all nodes and edges
of the grid using as few edge traversals as possible. A node is explored when it is wvisited for the first
time and an edge is explored when it is traversed for the first time. At any node the robot knows
its global position and the directions of the incident edges. Betke, Rivest and Singh [3] introduced
an interesting, more complicated variant of this problem where an additional piecemeal constraint has
to be satisfied, i.e, the robot has to return to a start node s every so often. These returns might be
necessary because the robot has to refuel or drop samples collected on a trip.

Previous results: In [5], Deng, Kameda and Papadimitriou first studied the problem of explor-
ing rooms without obstacles. They give a deterministic 2-competitive online algorithm for exploring
rectilinear rooms if the length of the path is measured in the Lj-metric. The start and end point of
the exploration path have to be the same; otherwise the competitive ratio is slightly higher. Klein-
berg [11] shows than no deterministic online exploration algorithm can be better than 2-competitive
(again in the Li-metric). Recently, Hoffmann, Icking, Klein and Kriegel [8, 9] developed deterministic
exploration algorithms for general rooms, i.e., the exterior wall can be an arbitrary polygon. The
competitiveness achieved by their best algorithm is 26.5.

Deng, Kameda and Papadimitriou [5] also give lower and upper bounds on the competitive ratio
for exploring rooms with obstacles. They show that no algorithm for rooms with obstacles can achieve
a constant competitive ratio. The obstacles needed in the construction are long, thin diamonds.
Thus, the lower bound does not necessarily hold for restricted classes of obstacles such as rectangles
or rectilinear objects. Deng, Kameda and Papadimitriou also develop an O(n)-competitive algorithm
for exploring rectilinear rooms with n rectilinear obstacles. They conjectured that there exists an
algorithm that achieves a constant competitive ratio.

Kalyanasundaram and Pruhs consider the problem of exploring a scene that contains n convex
obstacles [10]. However, their model is different in that they only require that all the edges of the
obstacles have to be seen. At first glance, this problem seems to be equivalent to the problem of
exploring the whole environment, but Figure 3 illustrates a difference: An offline algorithm does not
have to explore the entire scene. Kalyanasundaram and Pruhs show that in this model Q(min(n, \/na))
is a lower bound on the competitive ratio achieved by any online algorithms, where « is the aspect
ratio of the scene. The aspect ratio of an obstacle O is defined as R/r, where R is the radius of the
smallest circle that circumscribes O and r is the largest circle that inscribes O. The aspect ratio of a
scene is the maximum of the aspect ratios of the obstacles. The scene of Figure 3 already gives a lower
bound of Q(y/n), where n is the number of rectangles. Kalyanasundaram and Pruhs also present a
strategy with a competitive ratio that matches the lower bound of Q(min(n,/na)) up to a constant
factor. We note that the lower bound does not hold for the model studied by Deng, Kameda and

[] W [|;| |;|]
[|;| |;| |;|] k
[|;| |;| |;|]

Figure 3: If an offline strategy needs to see only the boundary of all obstacles, then it can follow the
path shown in the figure. By making the gaps between the rectangles small enough, this path does
not see the O(k?) darkly shaded areas within the scene. An online algorithm has to visit all these
areas since it has to make sure that no obstacle is contained in one of them.

Papadimitriou that we will consider in this paper.

Betke, Rivest and Singh [3] developed two algorithms for piecemeal exploration of grids with
rectangular obstacles. The algorithms, called Wavefront and Ray, need O(|E|) edge traversals where
|E| is the number of edges in the graph. This is optimal. The Wavefront algorithm implements a
breadth-first strategy while the Ray algorithm implements a simple and elegant depth-first strategy.

Our contribution: In Section 2 of this paper we first present lower bounds for the problem of
exploring a room with n rectangles. We show that no deterministic or randomized online exploration
problem can be better than Q(y/n)-competitive, disproving the conjecture by Deng, Kameda and
Papadimitriou. Our proof is based on a new recursive construction of a scene. The robot repeatedly
has to find relevant parts of the room in which obstacles are located. We can extend our bound to
three-dimensional scenes without obstacles. We show that no algorithm for exploring the interior of a
rectilinear polyhedron with n vertices can be better than Q(y/n)-competitive.

In Section 3 we study piecemeal exploration. We present an algorithm that explores a grid with
arbitrary obstacles using O(|E|) edge traversals, which is optimal. Our algorithm is a generalization
of the Ray algorithm by Betke, Rivest and Singh. In the original Ray algorithm for rectangular
obstacles, it is required that the robot always knows a path back to the start node whose length is
most the radius of the graph. When exploring grids with arbitrary obstacles, this constraint cannot
be satisfied. We solve this problem by presenting an efficient strategy for exploring the boundary of
arbitrary obstacles.

2 Lower bounds

In this section we give lower bounds on the competitive ratios achieved by deterministic and random-
ized online exploration algorithms in two-dimensional scenes.
2.1 A lower bound for deterministic online algorithms

Theorem 1 Let A be a deterministic online algorithm for exploring two-dimensional scenes with n
rectangles. If A is c-competitive, then ¢ = Q(\/n).

In the remainder of this section we prove this theorem. Given an online exploration algorithm A,
we construct a scene with n rectangles such that the path used by A is at least Q(y/n) times as long
as the path used by an optimal offline algorithm OPT. We show how to construct the scene and then
analyze the paths by A and OPT.

The construction: Let n be a positive integer and k = [\/n/2]. Let ¢ = 1(2k)~*. The obstacles
used in the construction are k-combs, as depicted in Figure 4.

3

,,,

3 Recursive subproblem i
HY) —m7VV—— ‘

W;
Figure 4: A k-comb in stage i.

A k-comb consists of k spike rectancles, or spikes for short, that span the whole width of the k-comb,
and k — 1 base rectangles that have width wp, = 1. The side of a base rectangle that is aligned with
the spikes is called the outer side of the base rectangle; the opposite side is called the inner side. The
distance between a spike and a base rectangle is ¢’ = ¢2/(2k). This is illustrated in Figure 5.

spike |
€ Wz — &

outer inner

side side

base rectangle

Wy

Figure 5: A spike and a base rectangle.

We use a recursive construction where the rectangles become very thin. We show later how to modify
the scene so that a unit diameter circle can be inscribed into any rectangle.

The construction of the scene proceeds in k stages. In each stage i, 1 < i < k, exactly one k-comb
is used. Thus, k(2k—1) € O(n) rectangles are placed in total. The k-comb of the first stage has height
k and width 2k. The crucial property of our construction is that the k-comb of stage ¢, 2 <14 < k, is
placed between two spikes of stage ¢ — 1.

For i = 1,...,k, let W; be the length available in x-direction to place the k-comb of stage i and
let H; be the length available in y-direction (see Figure 4). We set H; = k and W7 = 2k. In every
Stage ¢, 2 < ¢ < k, the distance between the current k-comb and the rectangles that belong to the
k-comb of Stage i — 1 is €. For the width W;, 1 < ¢ < k, we obtain

Wi:2k—(wb+8)(i—1) > k. (1)

We set the height h; of a base rectangle in stage i to (H;/2k) + 2¢. The height of a spike is then given
by (H] — 2¢)/k where H] = H; — (k — 1)(H;/2k + 2(¢ + ¢')). This implies that H;, = H;/(2k). We

conclude '
H; = Hy/(2k)" . (2)

We now specify the placement of the k-comb for stage ¢ + 1 in stage i, 1 < i < k. Recall that the
exploration algorithm A used by the robot is deterministic. Assume that the robot is located at the
start point of the scene, which is one of the four corners of the k-comb in stage ¢. The k-comb of stage
i is placed such that the robot faces the outer sides of the base rectangles. Thus, if the robot enters
stage ¢ to the right of a spike in stage ¢ — 1, then the k-comb is a mirror image of the arrangement
given in Figure 4. To find the k-comb of stage ¢ + 1, the robot has to explore the inner sides of the
base rectangles. It will succeed only at the very last base rectangle. Alternatively, the robot can move
to the other side of the k-comb. In this case the k-comb of stage i + 1 may be between two spikes of
any unexplored base rectangle.

The analysis: We first study OPT. To explore stage 7 of the construction, OPT can move as
follows. We assume that the robot is located in the lower left corner of the stage.

1. Move a distance of H; upwards, along the left side of the obstacles.

2. If i < k, move to the lower left corner of the k-comb for stage i + 1 and explore stage i + 1
recursively. Otherwise, if ¢ = k, move to the right of the k-comb.

3. Move upwards and then again downwards along the right side of the k-comb.

If i < k, then the distance LY, 5y traveled in stage i is
Cpr < 2H; +wy + ¢ + 2H; = 4H; 4+ wy + €.

If i = k, then the distance traveled is bounded by 4Hj, + 2k — (k — 1)(wyp + €) where the additive factor
of 2k — (k — 1)(wp + €) accounts for travel to the right side of the k-comb. Summing up and using (2),
we obtain that the length of the path used by OPT is bounded by

k—1 k
Lopr < E:(Zlf‘fZ + wp + E) 4+ 4H;, + 2k — (k - 1)(wb + E) = Z(4H1)/(2k)171 + 2k < 10k. (3)
i=1 i=1

For the analysis of the online algorithm A we only consider the distance traveled in z-direction. When
the robot is located at a lower corner of stage ¢, it has two possibilities to find the k-comb of the next
stage. It can (a) explore the inner sides of all base rectangles or (b) change sides (that is, it moves
from the left to the right side of the k-comb, or vice-versa). In the first case the k-comb of the next
stage, which is a distance of ¢ below the upper boundary of the base rectangle (and above the lower
boundary, respectively), only becomes visible at a distance of at most ¢ to the inner side of the base
rectangle since the distance between a base rectangle and a spike is &' = £2/2k. This is illustrated in
Figure 6.

spike ‘

base €

6 -
le
rectangle

k-comb of the next stage ‘

<2k

Figure 6: The k-comb of the next stage only becomes visible at a distance of € to the inner side of a
base rectangle.

Hence, the robot has to travel at least a distance of 2(wp — ¢) for each of the k — 1 base rectangles.
In the second case the robot travels at least a distance of W; > k. Thus, the length of the path
traveled by A is at least Y% ; k = k% and Theorem 1 follows because by (3) we have Lopr € O(k).

The size of the obstacles: Our construction needs very small rectangles. The rectangles in
stage k have a height of h with 3(2k)"® < h < k~*. This problem can be solved by multiplying all
lengths by a factor of 2(2k)*. Suppose that all lengths are multiplied by a factor of x. It is easy to
see that the length of the path used by OPT increases by a factor of exactly x. In the same way, the
length of the path used by A increases by a factor of z and the competitive ratio remains the same.

2.2 A lower bound for randomized online algorithms

Theorem 2 Let R be a randomized online algorithm for exploring two-dimensional scenes with n
rectangles. If R is c-competitive, then ¢ = Q(y/n).

Proof: We randomize the construction given in the previous section and show that the expected
length of the path used by any deterministic online exploration algorithm A is at least Q(y/n) times
the length of the path used by OPT. The theorem then follows from Yao’s minimax principle [14]. In
each stage, the k-comb is placed so that with probability 1/2 the outer sides of the base rectangles
are to the left side, and with probability 1/2 they are to the right side. In each stage the position of
the k-comb of the next stage is chosen randomly. Each of the £k — 1 configurations occurs with equal
probability.

The upper bound on the length of the path used by OPT does not change. Consider any deter-
ministic online algorithm A. When entering stage i, with probability 1/2, the robot is located on the
opposite side as the base rectangles and, thus, incurs no cost in z-direction. With probability 1/2,
the robot is located on the same side as the base rectangles. The robot can change sides, traversing a
path of length at least k. If the robot stays on the same side, the expected number of base rectangles
it has to explore before finding the k-comb of the next stage is k/2. Thus, the total length of the path
traversed by A reduces by a factor of 4 but it is still in Q(k2). O

2.3 Three-dimensional scenes

Theorem 3 Let A be an online algorithm for exploring a simple three-dimensional rectilinear poly-
heron without obstacles. If A is c-competitive, then ¢ = Q(y/n) where n is the number of vertices of
the polyhedron.

This result was independently obtained by Frank Hoffmann [7] based on a preliminary version of this
paper that contained the lower bounds for the two-dimensional case.

Proof: To explore a three-dimensional polyhedron, the robot is allowed to move not only in z- and
y-direction but also in z-direction. We construct a polyhedron such that the rectangles are no longer
independent objects in the scene but part of the hull of the polyhedron. We first modify the above
construction in the following way. We place a rectangle R around the scene constructed above and
we join each base rectangle with the spike above it. In this way we obtain k& — 1 L-shaped obstacles
in each k-comb. Let P be the polygon enclosed by R where the holes of P are given by the L-shaped
obstacles and the remaining spikes.

We now extend each of the obstacles used in stage i, 1 < ¢ < k a distance of 2(k + 1 — i) in
the z-direction. The rectangle R is extended a distance of 2(k 4+ 1) in the z-direction. All L-shaped
obstacles are closed from the top by a cover. The cover is a cuboid of height 1 that just fits the

2(k+1-1) base

rectangle Giprlsn

) . cover 1
I
I
I
I
I
I
I
I
I
I

1

Figure 7: An L-shaped obstacle in stage ¢ with a cover.

L-obstacle (see Figure 7). The remaining spikes of the k-combs also get a cover, that is, they are
extended one unit in z-direction. The distance to the cover of stage i — 1 is 1. We close the lower side
of our construction at z = 0 with the polygon P and the upper side at z = 2(k + 1) with the rectangle
R. The surfaces we have constructed now define a simply connected rectilinear polyhedron. In the
beginning the robot is located in the lower left corner of the polyhedron at height z = 2(k + 1).

In each stage the robot now has three options. First it can travel above the covers and “peek”
below each cover at a cost of 2(1 —¢). Or it can stay on the left side and explore the inner sides of the
L-shaped obstacles. Or it can change sides. It may happen that the robot moves in each stage some
distance from left to right by traveling above the covers. When it finally changes sides, the distance
to the right side can be very small. In this case, we accumulate the distance traveled from left to right
in the previous stages and charge it to the current stage. Thus, in each case the distance traveled by
the robot is again at least k. Note that the robot cannot pass below the obstacles.

To explore the polyhedron, OPT moves two units down, right below the covers, and executes the
algorithm for the two-dimensional case. In general, when entering stage 7, OPT is above the covers of
that stage. It moves two units downwards, explores the left sides of the obstacles and enters the next
stage. After having reached stage k, the robot changes sides and moves two units up when exiting a
stage. The path traversed by OPT increases only by an additive factor of O(k). O

3 Exploring grids with arbitrary obstacles

Consider a grid graph with arbitrary obstacles and let s be the start node the robot has to relocate
to. Let r be the radius of the graph, i.e., r is the maximum of all shortest path distances between s
and any other node in the graph. We assume that the robot can traverse a total of 2(3 + «a)r edges,
for some constant a > 0, between two consecutive visits to s. Thus, it can traverse R = (3 + a)r
edges before moving back to s. We present an algorithm that explores an unknown grid with arbitrary
obstacles using O(|E|) edge traversals.

3.1 The algorithm

The algorithm we develop is a generalization of the Ray algorithm proposed by Betke, Rivest and
Singh [3]. The original Ray algorithm only explores grids with rectangular obstacles. It is essential
in the algorithm that the robot always knows a path back to s that has a length of at most . When
exploring grids with arbitrary obstacles we cannot always satisfy such a constraint. We solve this
problem by presenting an efficient strategy for exploring the boundary of arbitrary obstacles.

We assume that the exterior boundary of the grid is a rectangle and that no obstacle touches the
exterior boundary. Moreover, for simplicity, we assume that (1) the start node s is located in the

Start

Figure 8: The open segments Figure 9: The Ray algorithm

bottom left corner of the scene and (2) that no edge belongs to the boundary of two obstacles. In
the appendix we show how to handle the general case. At any time dist denotes the number of edges
traversed by the robot since the last visit to s.

A node or an edge on the boundary of an obstacle is explored when it is visited or traversed,
respectively, during an excecution of the procedure Map-Obstacles that we will decribe in detail below.
ATl other nodes and edges in the grid are explored when they are visited or traversed, respectively, for
the first time. A node or edge that is not explored is also called new.

In a first step, our Ray algorithm explores the exterior boundary of the scene. Starting from s,
it travels in clockwise direction along the boundary until s is reached again. Knowing the exterior
boundary will be convenient because the robot can then distinguish it from the unexplored boundary
of obstacles. During the exploration of the exterior boundary, whenever dist = R at some node z, the
robot executes a procedure Refuel that we will describe later. In this procedure the robot moves back
to s and then relocates again to x to resume exploration.

An obstacle is new if none of the nodes and edges on the boundary are explored. An obstacle is
mapped fully if all nodes and edges on the boundary are explored. For an obstacle O, an open segment
S of O is a maximal sequence consecutive horizontal edges on the boundary of O such that the interior
of O is to the south of S. In Figure 8 the open segments are shown in bold lines.

The actual exploration of the scene proceeds in rays. Let S be the bottom segment of the exterior
boundary and let s = z1,...,x, be the vertices of S. For every i, 1 < i < n, the robot starts at node
x; and explores a vertical ray of edges in northern direction until an obstacle or the exterior boundary
is hit. Then the robot backtracks to x; and moves to the neighboring node z;; if it exists. In general,
we say that the robot hits an obstacle if it reaches a node on the boundary with degree less than 4.
We refine this definition when rays are traversed. Here the robot hits an obstacle if the obstacle blocks
the ray, i.e. there is no outgoing edge in northern direction.

An important feature of the Ray algorithm is that it applies a depth-first strategy, as illustrated
in Figure 9. Whenever the robot hits a new obstacle O at a node y while exploring a ray R; started at
x;, the robot immediately explores the boundary of O using a procedure Map-Obstacles that we will
explain below. When Map-Obstacles terminates, the robot is again located on y. The robot then visits
the open segments of O in clockwise direction and explores vertical rays started at these segments.
The same strategy is applied recursively to new obstacles that are discovered while the robot explores
rays started at O’s open segments. When all the open segments of O are visited, the robot moves to
y and backtracks along R; to x;. While exploring vertical rays, at any node the robot also moves one

edge to the west to explore horizontal edges.

A formal description of the exploration along rays is given in the procedure Shoot-Rays. Given a
segments S, which is either the bottom segment of the exterior boundary or an open segment of an
obstacle, the robot explores vertical rays starting at the nodes of S. We require that at the beginning
of the procedure, the robot is located at one of the endnodes of S.

Algorithm Ray
1. Move along the exterior boundary of the scene until s is reached again. Execute Refuel
whenever dist = R;

2. Let S be the bottom segment of the exterior boundary;
3. Shoot-Rays(S);

Procedure Shoot-Rays(S5)

1. Let z be the current node where the robot is located and let x = x1, ..., z; be the vertices of S;
2. fori:=1tokdo

3. Move to z;;

4 Move on a vertical ray R; in northern direction until the exterior boundary or some

obstacle is hit. Execute Refuel whenever dist = R;

d. y := current node;

6. if a new obstacle was hit then

7. Map-Obstacles;

8. Let Si,...,S; be the open segments of O in clockwise order w.r.t. y;

9. for j:=1to !l do

10. Move in clockwise direction along O to first endpoint of S;. Execute
Refuel whenever dist = R;

11. Shoot-Rays(S;);

12. Move to y along the boundary of O. Execute Refuel whenever dist = R;

13. Move to z; following the ray R; backwards. Execute Refuel whenever dist = R;

In Shoot-Rays, when exploring vertical rays or moving around obstacles to reach open segments,
the robot executes Refuel whenever dist = R. Let x be the node the robot is located on when dist = R.
In Refuel the robot first moves back to s. In a command “Move back to s” the robot follows the path
that is has traversed since the last visit to s. Then the robot relocates to x: It computes a shortest path
P from s to z assuming all obstacles are known. If the robot hits a new obstacle O while traversing
P, it explores O using Map-Obstacles and then computes a new shortest path from the current node
to . Every time dist = R, the robot moves back to s.

Procedure Refuel
1. x := current node where the robot is located;
2. Move back to s;
3. while z is not reached do
P := shortest path from current node to x assuming that all obstacles are known;
Move along P until some new obstacle is hit or dist = R or z is reached;
if some new obstacle was hit then
Map-Obstacles;
if dist = R then
Move back to s;

© ® NS o

The crucial part of our Ray algorithm is the procedure Map-Obstacles that is called every time
the robot hits a new obstacle O at a node x. When Map-Obstacles terminates, O and all obstacles
hit during the execution of the procedure are mapped fully and the robot is located again on z,

Initially, the robot moves in, say, clockwise direction along the boundary of O and tries to reach z
again while dist < R. If it succeeds in reaching x, then O is mapped fully and the call of Map-Obstacles
terminates. If the robot cannot reach z while dist < R, then the call is more involved. An obstacle is
mapped partially if some nodes or edges on the boundary are explored but the obstacle is not mapped
fully. Note that boundary edges that have been traversed only when the robot moved along rays in
Shoot-Rays are still considered unexplored. Given a partially mapped obstacle, we call a maximal
sequence of explored nodes and edges on the boundary an explored segment. An explored segment
may consist of only one visited node.

During the execution of Map-Obstacles, we maintain a set of partially mapped obstacles. More
precisely, we maintain a set B of breakpoints, where each breakpoint b € B is the endpoint of an
explored segment. Initially, = is inserted into B. If the robot cannot move around O while dist < R,
then the node z reached when dist = R is added to B. The robot moves back to s and computes
a shortest path P from s to z assuming all obstacles are known. With respect to partially mapped
obstacles we require that P does not go through interior nodes of explored segments.

The exploration then proceeds in phases until B = (. In each phase the robot makes progress
towards exploring the boundary of partially explored obstacles. At the beginning of a phase the robot
is given a path P from the current node to the most recently inserted breakpoint by € B. The robot
then travels along P. We distinguish three cases.

Case 1: The robot hits by or some other b € B.

In this case by or b is deleted from B provided that the breakpoint is incident to an explored boundary
edge, i.e. by or b is not an isolated explored boundary node that is incident to only unexplored boundary
edges. The robot then moves along the unexplored boundary of the partially mapped obstacle until
dist = R or some other breakpoint b’ € B is reached, see Figure 10. If some b’ € B is reached, b’ is
deleted from B if no unexplored boundary starts at b'. Otherwise, if dist = R, the current node is
inserted as breakpoint into B. In any case the robot moves back to s and computes a shortest path
P from s to the most recently inserted breakpoint in B.

Casel Case 2

Figure 10: Exploration of partially mapped obstacles

Case 2: The robot hits a node y that belongs to the unexplored boundary of an obstacle.
Node y is inserted into B and a Boolean variable new is set to true, indicating that a new breakpoint
was inserted. The robot moves along the unexplored boundary until some b € B is reached or dist = R,
see Figure 10. If dist = R and no breakpoint was reached, the current node is inserted into B and the
robot moves back to s. If some b € B was reached and b = y, then the robot successfully mapped a
new obstacle. Node y = b is deleted from B if no unexplored boundary starts at b. The robot then
computes a new shortest path P from y to by. If the robot reaches some b € B, b # y, then b is deleted

10

from B and P is the path just traversed between y and b. In the next phase the robot tries to reach
y (if it does not run out of fuel) and explore new boundary edges starting from y. In any case, new is
set to false.

Case 3: The robot has not reached a b € B or a node y on unexplored boundary but dist = R.
The robot moves back to s and computes a new shortest path from s to by.

In the end, if B = () but the robot is not located on x, we insert = into B (in this special case
x is not the endpoint of an explored segment). The robots computes again a shortest path from the
current node to z. If the path hits new obstacles, the same exploration in phases starts again. In
the pseudocode below a phase starts in line 22 and ends in the following execution of line 21. We
have chosen this presentation so as to incorporate the initial movement of the robot around the new
obstacle O hit at z.

Procedure Map-Obstacles

1. z := current node robot is located; B := {z}; new := true; y := x;

2. while B # 0 do

3. if dist < R then

4. Move along unexplored boundary until some b € B is reached or dist = R;

5. if some b € B was reached then

6. if new = false then

7. Move back to s;

8. else if new = true and b = y then

9. new := false;

10. if no unexplored boundary starts at b then delete b from B;

11. if dist = R then

12. if unexplored boundary starts at current node then

13. Insert current node into B; new := false;

14. Move back to s;

15. if B = () and current node # x then

16. B :={z};

17. if B # () then

18. if new = true then

19. P := path from current node to most recently inserted node in B that

follows the boundary just explored; new := false;
20. else
21. P := shortest path from current node to most recently inserted node in B
assuming all obstacles are known;
22. Move along P until some b € B is reached or some unexplored boundary is hit at
a node y or dist = R;

23. if some b € B was reached and b is incident to an explored boundary edge then
24. Delete b from B;
25. else if some unknown boundary was hit at y then
26. Insert y into B; new := true;

3.2 The analysis of the Ray algorithm
3.2.1 Correctness

We first show that the procedure Map-Obstacles works correctly.

11

Lemma 1 Assume that at the beginning of an execution of Map-Obstacles all previously hit obstacles
are mapped fully. Then the following two statements hold at the end of the execution.

a) The obstacles hit at the beginning and during the execution are mapped fully.

b) The robot is located at the node where the execution started.

Proof: We first show that during an execution of Map-Obstacles, for any partially mapped obstacle,
the two endpoints of any explored segment are breakpoints in B. At the beginning of the execution the
current node z of the new obstacle O is inserted into B. The robot then moves along the unexplored
boundary of O. In general, whenever the robot hits a node y on unexplored boundary, y is inserted
into B in line 26 and the robot moves along the unexplored boundary in the following execution of
line 4. Whenever the robot has to interrupt the exploration of boundary edges because dist = R,
the current node is inserted into B in line 13. In line 10 a breakpoint b is only deleted from B if
no unexplored boundary starts at b. If a breakpoint is deleted in line 24, the robot moves along the
unexplored boundary in the following execution of line 4 and a breakpoint is inserted in line 13 when
dist = R.

Part a) now follows from the above statement and the fact that B = () when Map-Obstacles
terminates. For the proof of part b) we observe that if B = () and the current node is not equal to the
initial node z, then z is inserted into B in line 16. Thus, when Map-Obstacles terminates, B = () and
the robot is located on the node where the execution started. O

By the above lemma, an execution of Map-Obstacles starts and ends at the same node. Thus the
moves of the robot after lines 8 in Shoot-Rays and Refuel are well-defined. We conclude that all moves
during the Ray algorithm are well-defined. Every obstacle is definitely hit when the robot traverses
vertical rays in Shoot-Rays. Thus all nodes and edges on the boundary of obstacles are explored. Any
other vertical edge in the grid lies on a vertical ray started from the bottom segment of the exterior
boundary or from an open segment of some obstacle, and thus is being explored. Any other horizontal
edge in the grid is explored when the robot moves along vertical rays. Thus, when the Ray algorithm
terminates, the entire scene is explored.

3.2.2 Counting the number of edge traversals

In the following, given a path P, let |P| denote the length of P, i.e. |P| is the number of edges of P.

The robot is initially located on s. Let N be the total number of visits to s before the robot has
explored the entire scene. For ¢ = 1,..., N, let @); be the path traveled by the robot after the i-th
visit to s and before it starts its trip back to s. We will show that S, |Q;| € O(/E|). Since the total
number of edge traversals is bounded by 23V, |Q,|, the desired result follows.

An edge is called fresh (1) if it is traversed as a new edge and explored after the traversal or (2) if
it is traversed in a call of Shoot-Rays excluding executions of Refuel and Map-Obstacles. Note that in
Shoot-Rays all edges traversed on vertical rays or when moving around obstacles in lines 10 or 12 are
fresh.

Our first goal is to show that if a path @;, 1 < ¢ < N, traverses R = (3 4+ a)r edges, then it
traverses at least ar/2 fresh edges. We begin with some basic lemmas.

Lemma 2 Suppose that the robot is located at a node y and then repeatedly executes lines 4-9 of
Refuel. Whenever it has traversed 2r +1, | > 0, edges since the visit to y and has not yet moved back
to s, it has traversed at least 1/2 fresh edges.

12

Proof: Initially, in line 4 of Refuel, the robot computes a shortest path P from y to x assuming that
all obstacles are known. Thus |P| < 2r. Since the robot has traversed 2r + [edges, it must have hit an
obstacle. First assume that the robot is currently exploring the boundary of an obstacle O in line 7
but has not hit other new obstacles so far. When hitting O, less than |P| edges were traversed. All
edges traversed on the boundary of O are fresh. Thus the number of fresh edges traversed is at least
2r+1—|P| > 1.

We study the case that the robot has hit k, & > 1, new obstacles so far and was able to move
around them in line 7. Let y; be the node where O; is hit, 1 < j < k. Every time the robot manages
to move around an O; and reach y; again, it computes a shortest path from y; to = in the following
execution of line 4. Let P; be this path and let P]’- be the path traveled by the robot between y and
the first visit to y; (see Figure 11). By |O;| we denote the number of boundary edges on O;. Let P

X
L]

Yj+1

Yj
!
P P; Pjq

Figure 11: The definition of P; and P;.

be the empty path and Py = P. We prove inductively that |Pj| +|P;| < |P|+23,_;]0:] +|O;| holds
for j =0,...,k. Here we set |Og| = 0. For j = 0 there is nothing to show. Assume that the inequality
holds for j > 0. Let P(y;,y;j+1) be the path traveled by the robot on P; between y; and the first visit
to yjr1. We have |Pi | = |Pj + 0] + [P(yj, yj41)| and [Pji1| < |Pj| — [P(y;,y;11)] 4 [Oj41|. Thus
[Piiil + 1Pl <IPjl 4 [Pl + 105 + [Oja| < |P[423541 |0il + 10544l

We conclude that the robot has traversed 2r+1 < |P;|+|Py| < |P|+2 Z?Zl 0] <2r+2 Z?Zl |0
edges, i.e., [<2 Z?Zl |O;|. Since all edges traversed when exploring Oy, ..., O are fresh, the desired
bound follows.

Finally assume that the robot is currently moving around a new obstacle Oy,1 and has already
hit k new obstacles Oy,...,O. If the robot has traversed at most 2r edges when reaching Oy,
then the desired bound follows because all edges traversed on Oy,; are fresh. Suppose that the
robot has traversed 2r + I, I' > 0, edges when reaching Og,1. The robot has traversed at most
2r +1' < |Pi| + |P| < |P| + 22?:1 0;] <2r+ 22?:1 |0;| edges, at least Z?Zl |O;| of which were
fresh. Thus at least /2 fresh edges were fresh. When traversing the boundary of Ojyq only fresh
edges are traversed and the total number of fresh edges on the path isl —1'+1'/2 > 1/2. O

We want to show a similar statement for Map-Obstacles. We need one more definition and a useful
proposition. If during an execution of Map-Obstacles the robot hits a partially mapped obstacle at
a node y, let y; be the nearest explored node on the boundary of O if the robot travels in clockwise
direction around O starting at y. Similarly, let y, be the nearest explored node on the boundary of O
if the robot travels in counter-clockwise direction. Node y might be equal to either y; or y,.

13

Proposition 1 Suppose that the robot hits a partially mapped obstacle O at a node y while erecuting
Map-Obstacles. The following statements hold while dist < R.

a) If y = y; or y = y,, then the robot moves from y along the unexplored boundary of O until the
second of the two breakpoints is hit.

b) If y # y; and y # y,, then the robot moves in one direction along the unexplored boundary of
O until either y; or y, is hit. It then returns to y and moves along unezrplored boundary to the
second breakpoint.

When all edges between y; and y, are explored, the robot immediately moves back to s.

Proof: First assume that y is equal to either y; or y,. Say y is equal to y;. In line 24, y; is deleted
from B. In the following execution of line 4, the robot moves along the unexplored boundary of the
obstacle. If it reaches y,, the robot moves back to s (line 7) and deletes y, from B (lines 10) provided
that no unexplored boundary starts at y,. Note that new = false because if new = true in the previous
execution of line 17, then it was set to false in line 19.

Now assume that y # y; and y # y,. Node y is inserted into B in line 26 and new is set to true.
In the following execution of line 4 the robot moves in one direction along the unexplored boundary.
If it reaches, say, y;, then in line 19 P is set to be path back to y because new = true and y is the
most recently inserted breakpoint in B. In the next execution of line 22, the robot will try to reach y
(if the fuel suffices). Finally the robot tries to reach y, in the following execution of line 4. If it does
reach y,, then it moves back to s in line 7. O

Lemma 3 Suppose that the robot is located at s and then executes code of Map-Obstacles. Whenever
the robot has traversed r + 1, 0 < I, edges since the last visit to s and has to yet moved back to s, it
has traversed at least 1/2 fresh edges.

Proof: Initially, when the robot is located at s, let b € B be the most recently inserted breakpoint.
The robot computes a shortest path from s to b assuming all obstacles are known. Whenever the
robot hits a new obstacle at a node y and can move around the boundary while dist < R, y is first
inserted into B in line 26 and then deleted again in the following execution of line 10. In line 21, the
robot computes a path from y to b, which is still the most recently inserted breakpoint in B. Thus, if
the path traveled so far has not reached a partially mapped obstacle, the statement of the lemma can
be shown in the same way as Lemma 2.

If the path has reached a partially mapped obstacle O’ at a node y, then the robot is currently
located between y; and y,.. This follows from Propositition 1 because after having explored edges of a
partially mapped obstacle, the robot moves back to s. If y = y; or y = y,., then all edges traversed by
the robot on the boundary of O’ are fresh. If y # y; and y # y,, then at least half of the edges are
fresh. Let O be the set of obstacles hit by the robot before reaching O’. As in the proof of Lemma 3 we
can show that when reaching O’, the robot has traversed at most |P| +23 5co [0 <r+23 50 O]
edges. At least Y 5cp |O| of these edges are fresh. Here P is the initial path from s to b. Thus the
total number of fresh edges is at least (r +1— (r + 2 5c0 |0]) + Xoco |0 = 1/2. O

Lemma 4 If a path Q; traverses R edges, then it traverses at least ar/2 fresh edges.

Proof: Let); be an arbitrary path that traverses R edges. We distinguish cases depending on the
procedure in which the visit to s at the beginning of @); occurs.

1. The visit to s occurs during a call of Refuel.

14

2. The visit to s occurs during a call of Map-Obstacles.

Case 1: If the path @); ends during the call of Refuel, then the lemma follows from Lemma 2. If
the path ends after termination of Refuel, then the robot continues to explore edges on the exterior
boundary or in calls of Shoot-Rays including executions of Map-Obstacles. All edges traversed when
moving along the exterior boundary are fresh. Also, all edges traversed in Shoot-Rays are fresh by
definition. If the robot executes calls of Map-Obstacles, then it traverses only fresh edges along the
boundary of new obstacles. If at most 2r edges were traversed when Refuel terminates, then there is
nothing to show. If 2r + 1, 0 < [, edges were traversed at termination, then by Lemma 2 the total
number of fresh edges in Q; is R— (2r +1) +1/2=(14+a)r —1/2 > ar/2.

Case 2: If the path ends during the call of Map-Obstacles, then the desired bound follows from
Lemma 3. If @); ends after the call and the robot continues with executions of Shoot-Rays, then the
lemma can be shown using arguments of Case 1. It remains to study the case that after termination
of Map-Obstacles the robot continues executing Refuel. Lemmas 2 and 3 imply that whenever the
robot has traversed 3r + [edges, at least 1/2 edges were fresh. If @); ends in Refuel, then the desired
bound follows. If the path ends after termination of Refuel, then the robot explores only fresh edges
on the exterior boundary or in calls of Shoot-Rays including executions of Map-Obstacles. O

Consider an explored segment of a partially or fully mapped obstacle. The explored segment of a
fully mapped obstacle is the entire boundary. Any such sequence can be decomposed into fragments.
A fragment is a maximal sequence of consecutive edges that were explored successively on one of the
paths @;, 1 <i¢ < N. Thus, with every fragment we can associate a unique @);.

Lemma 5 Let O be a fully mapped obstacle whose boundary consists of of k > 2 fragments. Then
there exist at least [g] fragments for which the associated paths @Q; traverse R = (3 + a)r edges.

Proof: Consider the call of Map-Obstacles in which O’s boundary is explored. We examine the steps
in which the fragments are built up.

When the first fragment is explored, the associated path @; traverses R edges: O is hit at a node
y and the robot moves along O’s unexplored boundary. Since O’s boundary consists of at least two
fragments, the robot does not reach y again while dist < R. Thus @); traverses R edges. The lemma
now follows for all obstacles consisting of k = 2 fragments.

Let O be an obstacle whose boundary consists of £k > 2 fragments. We show that, during the
execution of Map-Obstacles, if an explored segment consists of [fragments, then for at least L%J +1
fragments the associated paths traverse R edges. For a segment o consisting of one fragment, the
statement clearly holds: The robot has hit O’s boundary at one of ¢’s endpoints and then traversed
boundary edges until dist = R.

There are two possibilities how an explored segment can grow. (1) An explored segment o is
extended at one of the endpoints. (2) Two explored segments o; and oy are merged into a larger
segment when the robot explores boundary edges between o2 and os.

In case (1) there are again two possibilities how o can be extended. First, the robot can reach an
endpoint of ¢ and traverse unexplored edges starting from that node until dist = R. Secondly, the
robot can hit O’s boundary at an unexplored node y and then traverse unexplored boundary edges
until an endpoint of ¢ is reached. In this case, the robot will return to y and explore boundary edges
starting from y until dist = R. In both cases the path traverses R edges and in the extended segment
o', for at least [%J +1+1> [HTIJ + 1 fragments, the associated paths traverse R edges.

For the analysis of case (2), let o7 and o2 be two segments consisting of /1 and Iy fragments. The
path @; joining o7 and o2 does not necessarily traverse R edges. However, L%J +1+ L%J +1>
LWTZHJ + 1 for all combinations of odd end even l;,l5. Thus the above statement holds. O

15

Lemma 6 The number of paths Q; that traverse R = (34 a)r edges is at least as large at the number
of paths that traverse less than R edges.

Proof: A path only traverses less than R edges if it hits a partially mapped obstacle during an
execution of Map-Obstacles and explores edges between two explored segments. In this case the robot
might return to s before R edges are traversed (see Proposition 1). Thus every path that traverses
less than R edges ends on the boundary of an obstacle and the associated fragment belongs to an
explored segment with at least two fragments. Lemma 5 states that for any obstacle with at least two
fragments, the number of fragments that represent paths of length R is as least as large as the number
of fragments that represent paths of length < R. The lemma follows because every path @; explores
at most one obstacle whose boundary consists of at least two fragments. O

Theorem 4 The Ray algorithm ezplores a grid with arbitrary obstacles using O(|E|) edge traversals.

Proof: During the execution of the Ray algorithm at most 4|E| fresh edges are traversed. There are
|E| edge traversals across new edges that are explored after the traversal. In executions of Shoot-Rays,
every edge is traversed at most three times. An edge is traversed twice when the robot moves along
vertical rays in line 4 or backtracks in line 13. An edge on the boundary of an obstacle can be traversed
once more in lines 10 or 12. Lemma 4 implies that that there can be at most %‘TE‘ paths @; that

traverse R edges. By Lemma 6 the number of paths that travese less than R edges is bounded by the
same number. Thus YN |Q;] < M@ +a)r € O(|E|). O

ar

4 Conclusions

In this paper we presented a lower bound of Q(y/n) on the competitive ratio achieved by any online
algorithm to explore a scene with n axis-parallel rectangles, thus disproving a conjecture by Deng,
Kameda, and Papadimitriou [5]. Our construction consists of ©(y/n) stages each of which contains
©(y/n) rectangles. The aspect ratio of the rectangles used in our construction is exponential in /7.
This raises the interesting open question whether it is possible to explore scenes with a constant
competitive ratio if the aspect ratio of the obstacles is bounded by a constant as, for instance, in
scenes consisting of squares.

Secondly, we presented an algorithm for piecemeal exploration of grids with arbitrary (rectilinear)
obstacles. Our algorithm uses O(|E|) edge traversals if the robot is able to travel a distance of 2(3+a)r,
for some constant o > 0, between two consecutive visits to a start node s. Here r is the maximum of
all shortest path distances between s and any other node in the graph. It is an open question whether
a grid with arbitrary obstacles can be explored with O(|E|) edge traversals if the robot can only travel
a distance of 67 or less.

References

[1] S. Albers and M. Henzinger. Exploring unknown environments. Proc. 29th Annual ACM Sympo-
stum on Theory of Computing, pages 416—425, 1997.

[2] B. Awerbuch, M. Betke, R. Rivest and M. Singh. Piecemeal graph learning by a mobile robot.
Proc. 8th Conference on Computational Learning Theory, pages 321-328, 1995.

[3] M. Betke, R. Rivest and M. Singh. Piecemeal learning of an unknown environment. Proc. 5th
Conference on Computational Learning Theory, pages 277-286, 1993.

16

[4]

[5]

[10]

[11]

[12]

[13]

[14]

M. Bender and D. Slonim. The power of team exploration: two robots can learn unlabeled directed
graphs. Proc. 85th Symposium on Foundations of Computer Science, pages 75-85, 1994.

X. Deng, T. Kameda and C. H. Papadimitriou. How to learn an unknown environment. Journal
of the ACM, 45:215-245, 1998.

X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Proc. 31st Symposium on Foun-
dations of Computer Science, pages 356-361, 1990.

F. Hoffmann. Private communication, 1997.

F. Hoffmann, C. Icking, R. Klein and K. Kriegel. A competitive strategy for learning a polygon.
Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, pages 166-174, 1997.

F. Hoffmann, C. Icking, R. Klein and K. Kriegel. The polygon exploration problem: A new strat-
egy and a new analysis technique. Proc. 3rd International Workshop on Algorithmic Foundations
of Robotics, 1998.

B. Kalyanasundaram and K. Pruhs. A competitive analysis of algorithms for searching unknown
scenes. Computational Geometry and Applications, 3:139-155, 1993.

J. Kleinberg. On-line search in a simple polygon. Proc. 5th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 8-15, 1994.

C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computer
Science, 84:127-150, 1991.

D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Communica-
tion of the ACM, 28:202-208, 1985.

A.C.-C. Yao. Probabilistic computations: Towards a unified measure of complexity. Proc. 17th
Annual IEEE Symposium on Foundations of Computer Science, pages 222-227, 1977.

17

Appendix

We show how to handle some generalizations. If an edge in the graph belongs to the boundary of two
obstacles, we simply keep a copy of the edge for each obstacle. When exploring boundary edges in
Map-Obstacles the robot has to keep track, which copy of the edge is explored. The number of edge
traversals increases by a factor of at most 2.

Suppose that start node s is an arbitrary node in the grid. Let L be the horizontal line through
s and let Lq,..., L, be the segments of L that lie entirely in the grid. First the robot explores the
segments L1, ..., L, and the exterior boundary of the scene. While doing so, it also explores obstacles
O1,...,0; that intersect L.

The robot then explores the upper part of the scene by traversing rays in northern direction started
from Lq,..., L, and from the open segments in Oy, ..., O that are to the north of L. Symmetrically,
the robot explores the lower part of the scene by exploring rays in the southern direction. The total
number of edge traversal is still O(|E|).

Figure 12: Start node s is an arbitrary node.

In a similar way we can handle the case that the exterior boundary is not a rectangle or that
obstacles touch the boundary. After the robot has explored the exterior boundary of the scene, it
explores rays from all horizontal segments of the exterior boundary and from the open segments of
the obstacles that touch the boundary.

18

