
Exploring Unknown Environments with ObstaclesSusanne Albers� Klaus Kursawey Sven SchuiererzAbstractWe study exploration problems where a robot has to construct a complete map of an unknownenvironment using a path that is as short as possible.In the �rst problem setting we consider, a robot has to explore n rectangles. We show thatno deterministic or randomized online algorithm can be better than 
(pn)-competitive, solvingan open problem by Deng, Kameda and Papadimitriou [5]. We also generalize this bound to theproblem of exploring three-dimensional rectilinear polyhedra without obstacles.In the second problem setting we study, a robot has to explore a grid graph with obstaclesin a piecemeal fashion. The piecemeal constraint was de�ned by Betke, Rivest and Singh [3] andimplies that the robot has to return a start node every so often. Betke et al. gave an e�cient algo-rithm for exploring grids with rectangular obstacles. We present an e�cient strategy for piecemealexploration of grids with arbitrary obstacles.1 IntroductionIn robot exploration problems, a robot has to construct a complete map of an unknown environmentusing a path that is as short as possible. Many geometric and graph theoretic versions of this problemhave been studied in the past [1, 2, 3, 4, 5, 6, 8, 9, 10, 11]. A general problem setting was introducedby Deng, Kameda and Papadimitriou [5]. The robot is placed in a room with obstacles. The exteriorwall of the room as well as the obstacles are modeled by simple polygons. Figure 1 shows an examplein which the room is a rectangle and all obstacles are rectilinear. The robot has 360� vision. Its taskis to move through the scene so that it sees all parts of the room. More precisely, every point in theroom must be visible from some point on the path traversed. The problem is interesting for severalpolygon types (general, rectilinear, convex, rectangular). Even the case that no obstacles are placedin the room has been the subject of extensive studies [5, 8, 9, 11].Given a scene S, let LA(S) be the length of the path traversed by algorithm A to explore S. Since Adoes not know S in advance it is also referred to as an online algorithm. Let LOPT (S) be the length ofthe path of an optimum algorithm that knows the scene in advance. Following Sleator and Tarjan [13]we call an online exploration algorithm A c-competitive if for all scenes S, LA(S) � c �LOPT (S). Herewe assume that A is a deterministic algorithm.In the scenario above it is assumed that the robot can see an in�nite range as long as no obstacleor exterior wall blocks the view. However, in practice, a robot's sensors can often scan only a distanceof a few meters. This situation can be modeled by adding a grid to the scene, as shown in Figure 2,and requiring that the robot moves on the nodes and vertices of the grid. A node in the grid models�Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Email: albers@mpi-sb.mpg.deyMax-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Email: kursawe@mpi-sb.mpg.dezInstitut f�ur Informatik, Am Flughafen 17, Geb. 051, D-79110 Freiburg, Germany. Email:schuiere@informatik.uni-freiburg.de 1



Figure 1: A sample scene Figure 2: A sample scene with a gridthe vicinity that the robot can see at a given point. Now the robot has to explore all nodes and edgesof the grid using as few edge traversals as possible. A node is explored when it is visited for the �rsttime and an edge is explored when it is traversed for the �rst time. At any node the robot knowsits global position and the directions of the incident edges. Betke, Rivest and Singh [3] introducedan interesting, more complicated variant of this problem where an additional piecemeal constraint hasto be satis�ed, i.e, the robot has to return to a start node s every so often. These returns might benecessary because the robot has to refuel or drop samples collected on a trip.Previous results: In [5], Deng, Kameda and Papadimitriou �rst studied the problem of explor-ing rooms without obstacles. They give a deterministic 2-competitive online algorithm for exploringrectilinear rooms if the length of the path is measured in the L1-metric. The start and end point ofthe exploration path have to be the same; otherwise the competitive ratio is slightly higher. Klein-berg [11] shows than no deterministic online exploration algorithm can be better than 54 -competitive(again in the L1-metric). Recently, Ho�mann, Icking, Klein and Kriegel [8, 9] developed deterministicexploration algorithms for general rooms, i.e., the exterior wall can be an arbitrary polygon. Thecompetitiveness achieved by their best algorithm is 26.5.Deng, Kameda and Papadimitriou [5] also give lower and upper bounds on the competitive ratiofor exploring rooms with obstacles. They show that no algorithm for rooms with obstacles can achievea constant competitive ratio. The obstacles needed in the construction are long, thin diamonds.Thus, the lower bound does not necessarily hold for restricted classes of obstacles such as rectanglesor rectilinear objects. Deng, Kameda and Papadimitriou also develop an O(n)-competitive algorithmfor exploring rectilinear rooms with n rectilinear obstacles. They conjectured that there exists analgorithm that achieves a constant competitive ratio.Kalyanasundaram and Pruhs consider the problem of exploring a scene that contains n convexobstacles [10]. However, their model is di�erent in that they only require that all the edges of theobstacles have to be seen. At �rst glance, this problem seems to be equivalent to the problem ofexploring the whole environment, but Figure 3 illustrates a di�erence: An o�ine algorithm does nothave to explore the entire scene. Kalyanasundaram and Pruhs show that in this model 
(min(n;pn�))is a lower bound on the competitive ratio achieved by any online algorithms, where � is the aspectratio of the scene. The aspect ratio of an obstacle O is de�ned as R=r, where R is the radius of thesmallest circle that circumscribes O and r is the largest circle that inscribes O. The aspect ratio of ascene is the maximum of the aspect ratios of the obstacles. The scene of Figure 3 already gives a lowerbound of 
(pn), where n is the number of rectangles. Kalyanasundaram and Pruhs also present astrategy with a competitive ratio that matches the lower bound of 
(min(n;pn�)) up to a constantfactor. We note that the lower bound does not hold for the model studied by Deng, Kameda and2



k
k

s

Figure 3: If an o�ine strategy needs to see only the boundary of all obstacles, then it can follow thepath shown in the �gure. By making the gaps between the rectangles small enough, this path doesnot see the O(k2) darkly shaded areas within the scene. An online algorithm has to visit all theseareas since it has to make sure that no obstacle is contained in one of them.Papadimitriou that we will consider in this paper.Betke, Rivest and Singh [3] developed two algorithms for piecemeal exploration of grids withrectangular obstacles. The algorithms, called Wavefront and Ray , need O(jEj) edge traversals wherejEj is the number of edges in the graph. This is optimal. The Wavefront algorithm implements abreadth-�rst strategy while the Ray algorithm implements a simple and elegant depth-�rst strategy.Our contribution: In Section 2 of this paper we �rst present lower bounds for the problem ofexploring a room with n rectangles. We show that no deterministic or randomized online explorationproblem can be better than 
(pn)-competitive, disproving the conjecture by Deng, Kameda andPapadimitriou. Our proof is based on a new recursive construction of a scene. The robot repeatedlyhas to �nd relevant parts of the room in which obstacles are located. We can extend our bound tothree-dimensional scenes without obstacles. We show that no algorithm for exploring the interior of arectilinear polyhedron with n vertices can be better than 
(pn)-competitive.In Section 3 we study piecemeal exploration. We present an algorithm that explores a grid witharbitrary obstacles using O(jEj) edge traversals, which is optimal. Our algorithm is a generalizationof the Ray algorithm by Betke, Rivest and Singh. In the original Ray algorithm for rectangularobstacles, it is required that the robot always knows a path back to the start node whose length ismost the radius of the graph. When exploring grids with arbitrary obstacles, this constraint cannotbe satis�ed. We solve this problem by presenting an e�cient strategy for exploring the boundary ofarbitrary obstacles.2 Lower boundsIn this section we give lower bounds on the competitive ratios achieved by deterministic and random-ized online exploration algorithms in two-dimensional scenes.2.1 A lower bound for deterministic online algorithmsTheorem 1 Let A be a deterministic online algorithm for exploring two-dimensional scenes with nrectangles. If A is c-competitive, then c = 
(pn).3



In the remainder of this section we prove this theorem. Given an online exploration algorithm A,we construct a scene with n rectangles such that the path used by A is at least 
(pn) times as longas the path used by an optimal o�ine algorithm OPT. We show how to construct the scene and thenanalyze the paths by A and OPT.The construction: Let n be a positive integer and k = bpn=2c. Let " = 12(2k)�k. The obstaclesused in the construction are k-combs, as depicted in Figure 4."

""
Hi

Wi
hi = Hi=(2k) + 2"Recursive subproblem

Figure 4: A k-comb in stage i.A k-comb consists of k spike rectancles, or spikes for short, that span the whole width of the k-comb,and k � 1 base rectangles that have width wb = 1. The side of a base rectangle that is aligned withthe spikes is called the outer side of the base rectangle; the opposite side is called the inner side. Thedistance between a spike and a base rectangle is "0 = "2=(2k). This is illustrated in Figure 5.sideouter base rectangle innersidewb"0 spikeWi � "Figure 5: A spike and a base rectangle.We use a recursive construction where the rectangles become very thin. We show later how to modifythe scene so that a unit diameter circle can be inscribed into any rectangle.The construction of the scene proceeds in k stages. In each stage i, 1 � i � k, exactly one k-combis used. Thus, k(2k�1) 2 �(n) rectangles are placed in total. The k-comb of the �rst stage has heightk and width 2k. The crucial property of our construction is that the k-comb of stage i, 2 � i � k, isplaced between two spikes of stage i� 1.For i = 1; : : : ; k, let Wi be the length available in x-direction to place the k-comb of stage i andlet Hi be the length available in y-direction (see Figure 4). We set H1 = k and W1 = 2k. In everyStage i, 2 � i � k, the distance between the current k-comb and the rectangles that belong to thek-comb of Stage i� 1 is ". For the width Wi, 1 � i � k, we obtainWi = 2k � (wb + ")(i � 1) � k: (1)We set the height hi of a base rectangle in stage i to (Hi=2k)+ 2". The height of a spike is then givenby (H 0i � 2")=k where H 0i = Hi � (k � 1)(Hi=2k + 2(" + "0)). This implies that Hi+1 = Hi=(2k). We4



conclude Hi = H1=(2k)i�1: (2)We now specify the placement of the k-comb for stage i+ 1 in stage i, 1 � i � k. Recall that theexploration algorithm A used by the robot is deterministic. Assume that the robot is located at thestart point of the scene, which is one of the four corners of the k-comb in stage i. The k-comb of stagei is placed such that the robot faces the outer sides of the base rectangles. Thus, if the robot entersstage i to the right of a spike in stage i � 1, then the k-comb is a mirror image of the arrangementgiven in Figure 4. To �nd the k-comb of stage i + 1, the robot has to explore the inner sides of thebase rectangles. It will succeed only at the very last base rectangle. Alternatively, the robot can moveto the other side of the k-comb. In this case the k-comb of stage i+ 1 may be between two spikes ofany unexplored base rectangle.The analysis: We �rst study OPT. To explore stage i of the construction, OPT can move asfollows. We assume that the robot is located in the lower left corner of the stage.1. Move a distance of Hi upwards, along the left side of the obstacles.2. If i < k, move to the lower left corner of the k-comb for stage i + 1 and explore stage i + 1recursively. Otherwise, if i = k, move to the right of the k-comb.3. Move upwards and then again downwards along the right side of the k-comb.If i < k, then the distance LiOPT traveled in stage i isLiOPT � 2Hi +wb + "+ 2Hi = 4Hi + wb + ":If i = k, then the distance traveled is bounded by 4Hk+2k� (k�1)(wb+ ") where the additive factorof 2k� (k� 1)(wb+ ") accounts for travel to the right side of the k-comb. Summing up and using (2),we obtain that the length of the path used by OPT is bounded byLOPT � k�1Xi=1(4Hi +wb + ") + 4Hk + 2k � (k � 1)(wb + ") = kXi=1(4H1)=(2k)i�1 + 2k � 10k: (3)For the analysis of the online algorithm A we only consider the distance traveled in x-direction. Whenthe robot is located at a lower corner of stage i, it has two possibilities to �nd the k-comb of the nextstage. It can (a) explore the inner sides of all base rectangles or (b) change sides (that is, it movesfrom the left to the right side of the k-comb, or vice-versa). In the �rst case the k-comb of the nextstage, which is a distance of " below the upper boundary of the base rectangle (and above the lowerboundary, respectively), only becomes visible at a distance of at most " to the inner side of the baserectangle since the distance between a base rectangle and a spike is "0 = "2=2k. This is illustrated inFigure 6.
k-comb of the next stage "� 2k"0 "baserectangle spike

Figure 6: The k-comb of the next stage only becomes visible at a distance of " to the inner side of abase rectangle. 5



Hence, the robot has to travel at least a distance of 2(wb� ") for each of the k� 1 base rectangles.In the second case the robot travels at least a distance of Wi � k. Thus, the length of the pathtraveled by A is at least Pki=1 k = k2 and Theorem 1 follows because by (3) we have LOPT 2 O(k).The size of the obstacles: Our construction needs very small rectangles. The rectangles instage k have a height of h with 12(2k)�k < h < k�k. This problem can be solved by multiplying alllengths by a factor of 2(2k)k. Suppose that all lengths are multiplied by a factor of x. It is easy tosee that the length of the path used by OPT increases by a factor of exactly x. In the same way, thelength of the path used by A increases by a factor of x and the competitive ratio remains the same.2.2 A lower bound for randomized online algorithmsTheorem 2 Let R be a randomized online algorithm for exploring two-dimensional scenes with nrectangles. If R is c-competitive, then c = 
(pn).Proof: We randomize the construction given in the previous section and show that the expectedlength of the path used by any deterministic online exploration algorithm A is at least 
(pn) timesthe length of the path used by OPT. The theorem then follows from Yao's minimax principle [14]. Ineach stage, the k-comb is placed so that with probability 1/2 the outer sides of the base rectanglesare to the left side, and with probability 1/2 they are to the right side. In each stage the position ofthe k-comb of the next stage is chosen randomly. Each of the k � 1 con�gurations occurs with equalprobability.The upper bound on the length of the path used by OPT does not change. Consider any deter-ministic online algorithm A. When entering stage i, with probability 1/2, the robot is located on theopposite side as the base rectangles and, thus, incurs no cost in x-direction. With probability 1/2,the robot is located on the same side as the base rectangles. The robot can change sides, traversing apath of length at least k. If the robot stays on the same side, the expected number of base rectanglesit has to explore before �nding the k-comb of the next stage is k=2. Thus, the total length of the pathtraversed by A reduces by a factor of 4 but it is still in 
(k2). 22.3 Three-dimensional scenesTheorem 3 Let A be an online algorithm for exploring a simple three-dimensional rectilinear poly-heron without obstacles. If A is c-competitive, then c = 
(pn) where n is the number of vertices ofthe polyhedron.This result was independently obtained by Frank Ho�mann [7] based on a preliminary version of thispaper that contained the lower bounds for the two-dimensional case.Proof: To explore a three-dimensional polyhedron, the robot is allowed to move not only in x- andy-direction but also in z-direction. We construct a polyhedron such that the rectangles are no longerindependent objects in the scene but part of the hull of the polyhedron. We �rst modify the aboveconstruction in the following way. We place a rectangle R around the scene constructed above andwe join each base rectangle with the spike above it. In this way we obtain k � 1 L-shaped obstaclesin each k-comb. Let P be the polygon enclosed by R where the holes of P are given by the L-shapedobstacles and the remaining spikes.We now extend each of the obstacles used in stage i, 1 � i � k a distance of 2(k + 1 � i) inthe z-direction. The rectangle R is extended a distance of 2(k + 1) in the z-direction. All L-shapedobstacles are closed from the top by a cover. The cover is a cuboid of height 1 that just �ts the6



1
1coverspikerectanglebase2(k + 1� i)

Figure 7: An L-shaped obstacle in stage i with a cover.L-obstacle (see Figure 7). The remaining spikes of the k-combs also get a cover, that is, they areextended one unit in z-direction. The distance to the cover of stage i� 1 is 1. We close the lower sideof our construction at z = 0 with the polygon P and the upper side at z = 2(k+1) with the rectangleR. The surfaces we have constructed now de�ne a simply connected rectilinear polyhedron. In thebeginning the robot is located in the lower left corner of the polyhedron at height z = 2(k + 1).In each stage the robot now has three options. First it can travel above the covers and \peek"below each cover at a cost of 2(1� "). Or it can stay on the left side and explore the inner sides of theL-shaped obstacles. Or it can change sides. It may happen that the robot moves in each stage somedistance from left to right by traveling above the covers. When it �nally changes sides, the distanceto the right side can be very small. In this case, we accumulate the distance traveled from left to rightin the previous stages and charge it to the current stage. Thus, in each case the distance traveled bythe robot is again at least k. Note that the robot cannot pass below the obstacles.To explore the polyhedron, OPT moves two units down, right below the covers, and executes thealgorithm for the two-dimensional case. In general, when entering stage i, OPT is above the covers ofthat stage. It moves two units downwards, explores the left sides of the obstacles and enters the nextstage. After having reached stage k, the robot changes sides and moves two units up when exiting astage. The path traversed by OPT increases only by an additive factor of O(k). 23 Exploring grids with arbitrary obstaclesConsider a grid graph with arbitrary obstacles and let s be the start node the robot has to relocateto. Let r be the radius of the graph, i.e., r is the maximum of all shortest path distances between sand any other node in the graph. We assume that the robot can traverse a total of 2(3 + �)r edges,for some constant � > 0, between two consecutive visits to s. Thus, it can traverse R = (3 + �)redges before moving back to s. We present an algorithm that explores an unknown grid with arbitraryobstacles using O(jEj) edge traversals.3.1 The algorithmThe algorithm we develop is a generalization of the Ray algorithm proposed by Betke, Rivest andSingh [3]. The original Ray algorithm only explores grids with rectangular obstacles. It is essentialin the algorithm that the robot always knows a path back to s that has a length of at most r. Whenexploring grids with arbitrary obstacles we cannot always satisfy such a constraint. We solve thisproblem by presenting an e�cient strategy for exploring the boundary of arbitrary obstacles.We assume that the exterior boundary of the grid is a rectangle and that no obstacle touches theexterior boundary. Moreover, for simplicity, we assume that (1) the start node s is located in the7



Figure 8: The open segments Start Figure 9: The Ray algorithmbottom left corner of the scene and (2) that no edge belongs to the boundary of two obstacles. Inthe appendix we show how to handle the general case. At any time dist denotes the number of edgestraversed by the robot since the last visit to s.A node or an edge on the boundary of an obstacle is explored when it is visited or traversed,respectively, during an excecution of the procedureMap-Obstacles that we will decribe in detail below.All other nodes and edges in the grid are explored when they are visited or traversed, respectively, forthe �rst time. A node or edge that is not explored is also called new.In a �rst step, our Ray algorithm explores the exterior boundary of the scene. Starting from s,it travels in clockwise direction along the boundary until s is reached again. Knowing the exteriorboundary will be convenient because the robot can then distinguish it from the unexplored boundaryof obstacles. During the exploration of the exterior boundary, whenever dist = R at some node x, therobot executes a procedure Refuel that we will describe later. In this procedure the robot moves backto s and then relocates again to x to resume exploration.An obstacle is new if none of the nodes and edges on the boundary are explored. An obstacle ismapped fully if all nodes and edges on the boundary are explored. For an obstacle O, an open segmentS of O is a maximal sequence consecutive horizontal edges on the boundary of O such that the interiorof O is to the south of S. In Figure 8 the open segments are shown in bold lines.The actual exploration of the scene proceeds in rays. Let S be the bottom segment of the exteriorboundary and let s = x1; : : : ; xn be the vertices of S. For every i, 1 � i � n, the robot starts at nodexi and explores a vertical ray of edges in northern direction until an obstacle or the exterior boundaryis hit. Then the robot backtracks to xi and moves to the neighboring node xi+1 if it exists. In general,we say that the robot hits an obstacle if it reaches a node on the boundary with degree less than 4.We re�ne this de�nition when rays are traversed. Here the robot hits an obstacle if the obstacle blocksthe ray, i.e. there is no outgoing edge in northern direction.An important feature of the Ray algorithm is that it applies a depth-�rst strategy, as illustratedin Figure 9. Whenever the robot hits a new obstacle O at a node y while exploring a ray Ri started atxi, the robot immediately explores the boundary of O using a procedure Map-Obstacles that we willexplain below. WhenMap-Obstacles terminates, the robot is again located on y. The robot then visitsthe open segments of O in clockwise direction and explores vertical rays started at these segments.The same strategy is applied recursively to new obstacles that are discovered while the robot exploresrays started at O's open segments. When all the open segments of O are visited, the robot moves toy and backtracks along Ri to xi. While exploring vertical rays, at any node the robot also moves one8



edge to the west to explore horizontal edges.A formal description of the exploration along rays is given in the procedure Shoot-Rays. Given asegments S, which is either the bottom segment of the exterior boundary or an open segment of anobstacle, the robot explores vertical rays starting at the nodes of S. We require that at the beginningof the procedure, the robot is located at one of the endnodes of S.Algorithm Ray1. Move along the exterior boundary of the scene until s is reached again. Execute Refuelwhenever dist = R;2. Let S be the bottom segment of the exterior boundary;3. Shoot-Rays(S);Procedure Shoot-Rays(S)1. Let x be the current node where the robot is located and let x = x1; : : : ; xk be the vertices of S;2. for i := 1 to k do3. Move to xi;4. Move on a vertical ray Ri in northern direction until the exterior boundary or someobstacle is hit. Execute Refuel whenever dist = R;5. y := current node;6. if a new obstacle was hit then7. Map-Obstacles;8. Let S1; : : : ; Sl be the open segments of O in clockwise order w.r.t. y;9. for j := 1 to l do10. Move in clockwise direction along O to �rst endpoint of Sj. ExecuteRefuel whenever dist = R;11. Shoot-Rays(Sj);12. Move to y along the boundary of O. Execute Refuel whenever dist = R;13. Move to xi following the ray Ri backwards. Execute Refuel whenever dist = R;In Shoot-Rays, when exploring vertical rays or moving around obstacles to reach open segments,the robot executes Refuel whenever dist = R. Let x be the node the robot is located on when dist = R.In Refuel the robot �rst moves back to s. In a command \Move back to s" the robot follows the paththat is has traversed since the last visit to s. Then the robot relocates to x: It computes a shortest pathP from s to x assuming all obstacles are known. If the robot hits a new obstacle O while traversingP , it explores O using Map-Obstacles and then computes a new shortest path from the current nodeto x. Every time dist = R, the robot moves back to s.Procedure Refuel1. x := current node where the robot is located;2. Move back to s;3. while x is not reached do4. P := shortest path from current node to x assuming that all obstacles are known;5. Move along P until some new obstacle is hit or dist = R or x is reached;6. if some new obstacle was hit then7. Map-Obstacles;8. if dist = R then9. Move back to s; 9



The crucial part of our Ray algorithm is the procedure Map-Obstacles that is called every timethe robot hits a new obstacle O at a node x. When Map-Obstacles terminates, O and all obstacleshit during the execution of the procedure are mapped fully and the robot is located again on x,Initially, the robot moves in, say, clockwise direction along the boundary of O and tries to reach xagain while dist � R. If it succeeds in reaching x, then O is mapped fully and the call ofMap-Obstaclesterminates. If the robot cannot reach x while dist � R, then the call is more involved. An obstacle ismapped partially if some nodes or edges on the boundary are explored but the obstacle is not mappedfully. Note that boundary edges that have been traversed only when the robot moved along rays inShoot-Rays are still considered unexplored. Given a partially mapped obstacle, we call a maximalsequence of explored nodes and edges on the boundary an explored segment. An explored segmentmay consist of only one visited node.During the execution of Map-Obstacles, we maintain a set of partially mapped obstacles. Moreprecisely, we maintain a set B of breakpoints, where each breakpoint b 2 B is the endpoint of anexplored segment. Initially, x is inserted into B. If the robot cannot move around O while dist � R,then the node z reached when dist = R is added to B. The robot moves back to s and computesa shortest path P from s to z assuming all obstacles are known. With respect to partially mappedobstacles we require that P does not go through interior nodes of explored segments.The exploration then proceeds in phases until B = ;. In each phase the robot makes progresstowards exploring the boundary of partially explored obstacles. At the beginning of a phase the robotis given a path P from the current node to the most recently inserted breakpoint b0 2 B. The robotthen travels along P . We distinguish three cases.Case 1: The robot hits b0 or some other b 2 B.In this case b0 or b is deleted from B provided that the breakpoint is incident to an explored boundaryedge, i.e. b0 or b is not an isolated explored boundary node that is incident to only unexplored boundaryedges. The robot then moves along the unexplored boundary of the partially mapped obstacle untildist = R or some other breakpoint b0 2 B is reached, see Figure 10. If some b0 2 B is reached, b0 isdeleted from B if no unexplored boundary starts at b0. Otherwise, if dist = R, the current node isinserted as breakpoint into B. In any case the robot moves back to s and computes a shortest pathP from s to the most recently inserted breakpoint in B.
Case 1 Case 2

P Pb0=b yFigure 10: Exploration of partially mapped obstaclesCase 2: The robot hits a node y that belongs to the unexplored boundary of an obstacle.Node y is inserted into B and a Boolean variable new is set to true, indicating that a new breakpointwas inserted. The robot moves along the unexplored boundary until some b 2 B is reached or dist = R,see Figure 10. If dist = R and no breakpoint was reached, the current node is inserted into B and therobot moves back to s. If some b 2 B was reached and b = y, then the robot successfully mapped anew obstacle. Node y = b is deleted from B if no unexplored boundary starts at b. The robot thencomputes a new shortest path P from y to b0. If the robot reaches some b 2 B, b 6= y, then b is deleted10



from B and P is the path just traversed between y and b. In the next phase the robot tries to reachy (if it does not run out of fuel) and explore new boundary edges starting from y. In any case, new isset to false.Case 3: The robot has not reached a b 2 B or a node y on unexplored boundary but dist = R.The robot moves back to s and computes a new shortest path from s to b0.In the end, if B = ; but the robot is not located on x, we insert x into B (in this special casex is not the endpoint of an explored segment). The robots computes again a shortest path from thecurrent node to x. If the path hits new obstacles, the same exploration in phases starts again. Inthe pseudocode below a phase starts in line 22 and ends in the following execution of line 21. Wehave chosen this presentation so as to incorporate the initial movement of the robot around the newobstacle O hit at x.Procedure Map-Obstacles1. x := current node robot is located; B := fxg; new := true; y := x;2. while B 6= ; do3. if dist < R then4. Move along unexplored boundary until some b 2 B is reached or dist = R;5. if some b 2 B was reached then6. if new = false then7. Move back to s;8. else if new = true and b = y then9. new := false;10. if no unexplored boundary starts at b then delete b from B;11. if dist = R then12. if unexplored boundary starts at current node then13. Insert current node into B; new := false;14. Move back to s;15. if B = ; and current node 6= x then16. B := fxg;17. if B 6= ; then18. if new = true then19. P := path from current node to most recently inserted node in B thatfollows the boundary just explored; new := false;20. else21. P := shortest path from current node to most recently inserted node in Bassuming all obstacles are known;22. Move along P until some b 2 B is reached or some unexplored boundary is hit ata node y or dist = R;23. if some b 2 B was reached and b is incident to an explored boundary edge then24. Delete b from B;25. else if some unknown boundary was hit at y then26. Insert y into B; new := true;3.2 The analysis of the Ray algorithm3.2.1 CorrectnessWe �rst show that the procedure Map-Obstacles works correctly.11



Lemma 1 Assume that at the beginning of an execution of Map-Obstacles all previously hit obstaclesare mapped fully. Then the following two statements hold at the end of the execution.a) The obstacles hit at the beginning and during the execution are mapped fully.b) The robot is located at the node where the execution started.Proof: We �rst show that during an execution of Map-Obstacles, for any partially mapped obstacle,the two endpoints of any explored segment are breakpoints in B. At the beginning of the execution thecurrent node x of the new obstacle O is inserted into B. The robot then moves along the unexploredboundary of O. In general, whenever the robot hits a node y on unexplored boundary, y is insertedinto B in line 26 and the robot moves along the unexplored boundary in the following execution ofline 4. Whenever the robot has to interrupt the exploration of boundary edges because dist = R,the current node is inserted into B in line 13. In line 10 a breakpoint b is only deleted from B ifno unexplored boundary starts at b. If a breakpoint is deleted in line 24, the robot moves along theunexplored boundary in the following execution of line 4 and a breakpoint is inserted in line 13 whendist = R.Part a) now follows from the above statement and the fact that B = ; when Map-Obstaclesterminates. For the proof of part b) we observe that if B = ; and the current node is not equal to theinitial node x, then x is inserted into B in line 16. Thus, when Map-Obstacles terminates, B = ; andthe robot is located on the node where the execution started. 2By the above lemma, an execution of Map-Obstacles starts and ends at the same node. Thus themoves of the robot after lines 8 in Shoot-Rays and Refuel are well-de�ned. We conclude that all movesduring the Ray algorithm are well-de�ned. Every obstacle is de�nitely hit when the robot traversesvertical rays in Shoot-Rays. Thus all nodes and edges on the boundary of obstacles are explored. Anyother vertical edge in the grid lies on a vertical ray started from the bottom segment of the exteriorboundary or from an open segment of some obstacle, and thus is being explored. Any other horizontaledge in the grid is explored when the robot moves along vertical rays. Thus, when the Ray algorithmterminates, the entire scene is explored.3.2.2 Counting the number of edge traversalsIn the following, given a path P , let jP j denote the length of P , i.e. jP j is the number of edges of P .The robot is initially located on s. Let N be the total number of visits to s before the robot hasexplored the entire scene. For i = 1; : : : ; N , let Qi be the path traveled by the robot after the i-thvisit to s and before it starts its trip back to s. We will show that PNi=1 jQij 2 O(jEj). Since the totalnumber of edge traversals is bounded by 2PNi=1 jQij, the desired result follows.An edge is called fresh (1) if it is traversed as a new edge and explored after the traversal or (2) ifit is traversed in a call of Shoot-Rays excluding executions of Refuel and Map-Obstacles. Note that inShoot-Rays all edges traversed on vertical rays or when moving around obstacles in lines 10 or 12 arefresh.Our �rst goal is to show that if a path Qi, 1 � i � N , traverses R = (3 + �)r edges, then ittraverses at least �r=2 fresh edges. We begin with some basic lemmas.Lemma 2 Suppose that the robot is located at a node y and then repeatedly executes lines 4{9 ofRefuel. Whenever it has traversed 2r + l, l > 0, edges since the visit to y and has not yet moved backto s, it has traversed at least l=2 fresh edges. 12



Proof: Initially, in line 4 of Refuel , the robot computes a shortest path P from y to x assuming thatall obstacles are known. Thus jP j � 2r. Since the robot has traversed 2r+ l edges, it must have hit anobstacle. First assume that the robot is currently exploring the boundary of an obstacle O in line 7but has not hit other new obstacles so far. When hitting O, less than jP j edges were traversed. Alledges traversed on the boundary of O are fresh. Thus the number of fresh edges traversed is at least2r + l � jP j � l.We study the case that the robot has hit k, k � 1, new obstacles so far and was able to movearound them in line 7. Let yj be the node where Oj is hit, 1 � j � k. Every time the robot managesto move around an Oj and reach yj again, it computes a shortest path from yj to x in the followingexecution of line 4. Let Pj be this path and let P 0j be the path traveled by the robot between y andthe �rst visit to yj (see Figure 11). By jOj j we denote the number of boundary edges on Oj . Let P 00
y

xPj+1PjP 0j yj yj+1
Figure 11: The de�nition of Pj and P 0j.be the empty path and P0 = P . We prove inductively that jP 0j j+ jPj j � jP j+2Pi<j jOij+ jOj j holdsfor j = 0; : : : ; k. Here we set jO0j = 0. For j = 0 there is nothing to show. Assume that the inequalityholds for j � 0. Let P (yj ; yj+1) be the path traveled by the robot on Pj between yj and the �rst visitto yj+1. We have jP 0j+1j = jP 0j j+ jOj j+ jP (yj; yj+1)j and jPj+1j � jPj j � jP (yj ; yj+1)j+ jOj+1j. ThusjP 0j+1j+ jPj+1j � jP 0j j+ jPj j+ jOj j+ jOj+1j � jP j+ 2Pi<j+1 jOij+ jOj+1j:We conclude that the robot has traversed 2r+l � jP 0kj+ jPkj � jP j+2Pkj=1 jOj j � 2r+2Pkj=1 jOj jedges, i.e., l � 2Pkj=1 jOj j. Since all edges traversed when exploring O1; : : : ; Ok are fresh, the desiredbound follows.Finally assume that the robot is currently moving around a new obstacle Ok+1 and has alreadyhit k new obstacles O1; : : : ; Ok. If the robot has traversed at most 2r edges when reaching Ok+1,then the desired bound follows because all edges traversed on Ok+1 are fresh. Suppose that therobot has traversed 2r + l0, l0 > 0, edges when reaching Ok+1. The robot has traversed at most2r + l0 � jP 0kj + jPkj � jP j + 2Pkj=1 jOj j � 2r + 2Pkj=1 jOj j edges, at least Pkj=1 jOj j of which werefresh. Thus at least l0=2 fresh edges were fresh. When traversing the boundary of Ok+1 only freshedges are traversed and the total number of fresh edges on the path is l � l0 + l0=2 � l=2. 2We want to show a similar statement for Map-Obstacles. We need one more de�nition and a usefulproposition. If during an execution of Map-Obstacles the robot hits a partially mapped obstacle ata node y, let yl be the nearest explored node on the boundary of O if the robot travels in clockwisedirection around O starting at y. Similarly, let yr be the nearest explored node on the boundary of Oif the robot travels in counter-clockwise direction. Node y might be equal to either yl or yr.

13



Proposition 1 Suppose that the robot hits a partially mapped obstacle O at a node y while executingMap-Obstacles. The following statements hold while dist � R.a) If y = yl or y = yr, then the robot moves from y along the unexplored boundary of O until thesecond of the two breakpoints is hit.b) If y 6= yl and y 6= yr, then the robot moves in one direction along the unexplored boundary ofO until either yl or yr is hit. It then returns to y and moves along unexplored boundary to thesecond breakpoint.When all edges between yl and yr are explored, the robot immediately moves back to s.Proof: First assume that y is equal to either yl or yr. Say y is equal to yl. In line 24, yl is deletedfrom B. In the following execution of line 4, the robot moves along the unexplored boundary of theobstacle. If it reaches yr, the robot moves back to s (line 7) and deletes yr from B (lines 10) providedthat no unexplored boundary starts at yr. Note that new = false because if new = true in the previousexecution of line 17, then it was set to false in line 19.Now assume that y 6= yl and y 6= yr. Node y is inserted into B in line 26 and new is set to true.In the following execution of line 4 the robot moves in one direction along the unexplored boundary.If it reaches, say, yl, then in line 19 P is set to be path back to y because new = true and y is themost recently inserted breakpoint in B. In the next execution of line 22, the robot will try to reach y(if the fuel su�ces). Finally the robot tries to reach yr in the following execution of line 4. If it doesreach yr, then it moves back to s in line 7. 2Lemma 3 Suppose that the robot is located at s and then executes code of Map-Obstacles. Wheneverthe robot has traversed r + l, 0 < l, edges since the last visit to s and has to yet moved back to s, ithas traversed at least l=2 fresh edges.Proof: Initially, when the robot is located at s, let b 2 B be the most recently inserted breakpoint.The robot computes a shortest path from s to b assuming all obstacles are known. Whenever therobot hits a new obstacle at a node y and can move around the boundary while dist � R, y is �rstinserted into B in line 26 and then deleted again in the following execution of line 10. In line 21, therobot computes a path from y to b, which is still the most recently inserted breakpoint in B. Thus, ifthe path traveled so far has not reached a partially mapped obstacle, the statement of the lemma canbe shown in the same way as Lemma 2.If the path has reached a partially mapped obstacle O0 at a node y, then the robot is currentlylocated between yl and yr. This follows from Propositition 1 because after having explored edges of apartially mapped obstacle, the robot moves back to s. If y = yl or y = yr, then all edges traversed bythe robot on the boundary of O0 are fresh. If y 6= yl and y 6= yr, then at least half of the edges arefresh. Let O be the set of obstacles hit by the robot before reaching O0. As in the proof of Lemma 3 wecan show that when reaching O0, the robot has traversed at most jP j+2PO2O jOj � r+2PO2O jOjedges. At least PO2O jOj of these edges are fresh. Here P is the initial path from s to b. Thus thetotal number of fresh edges is at least 12(r + l � (r + 2PO2O jOj) +PO2O jOj = l=2: 2Lemma 4 If a path Qi traverses R edges, then it traverses at least �r=2 fresh edges.Proof: Let Qi be an arbitrary path that traverses R edges. We distinguish cases depending on theprocedure in which the visit to s at the beginning of Qi occurs.1. The visit to s occurs during a call of Refuel.14



2. The visit to s occurs during a call of Map-Obstacles.Case 1: If the path Qi ends during the call of Refuel , then the lemma follows from Lemma 2. Ifthe path ends after termination of Refuel , then the robot continues to explore edges on the exteriorboundary or in calls of Shoot-Rays including executions of Map-Obstacles. All edges traversed whenmoving along the exterior boundary are fresh. Also, all edges traversed in Shoot-Rays are fresh byde�nition. If the robot executes calls of Map-Obstacles, then it traverses only fresh edges along theboundary of new obstacles. If at most 2r edges were traversed when Refuel terminates, then there isnothing to show. If 2r + l, 0 < l, edges were traversed at termination, then by Lemma 2 the totalnumber of fresh edges in Qi is R� (2r + l) + l=2 = (1 + �)r � l=2 > �r=2:Case 2: If the path ends during the call of Map-Obstacles, then the desired bound follows fromLemma 3. If Qi ends after the call and the robot continues with executions of Shoot-Rays, then thelemma can be shown using arguments of Case 1. It remains to study the case that after terminationof Map-Obstacles the robot continues executing Refuel . Lemmas 2 and 3 imply that whenever therobot has traversed 3r + l edges, at least l=2 edges were fresh. If Qi ends in Refuel , then the desiredbound follows. If the path ends after termination of Refuel , then the robot explores only fresh edgeson the exterior boundary or in calls of Shoot-Rays including executions of Map-Obstacles. 2Consider an explored segment of a partially or fully mapped obstacle. The explored segment of afully mapped obstacle is the entire boundary. Any such sequence can be decomposed into fragments.A fragment is a maximal sequence of consecutive edges that were explored successively on one of thepaths Qi, 1 � i � N . Thus, with every fragment we can associate a unique Qi.Lemma 5 Let O be a fully mapped obstacle whose boundary consists of of k � 2 fragments. Thenthere exist at least dk2e fragments for which the associated paths Qi traverse R = (3 + �)r edges.Proof: Consider the call of Map-Obstacles in which O's boundary is explored. We examine the stepsin which the fragments are built up.When the �rst fragment is explored, the associated path Qi traverses R edges: O is hit at a nodey and the robot moves along O's unexplored boundary. Since O's boundary consists of at least twofragments, the robot does not reach y again while dist � R. Thus Qi traverses R edges. The lemmanow follows for all obstacles consisting of k = 2 fragments.Let O be an obstacle whose boundary consists of k > 2 fragments. We show that, during theexecution of Map-Obstacles, if an explored segment consists of l fragments, then for at least b l2c + 1fragments the associated paths traverse R edges. For a segment � consisting of one fragment, thestatement clearly holds: The robot has hit O's boundary at one of �'s endpoints and then traversedboundary edges until dist = R.There are two possibilities how an explored segment can grow. (1) An explored segment � isextended at one of the endpoints. (2) Two explored segments �1 and �2 are merged into a largersegment when the robot explores boundary edges between �2 and �2.In case (1) there are again two possibilities how � can be extended. First, the robot can reach anendpoint of � and traverse unexplored edges starting from that node until dist = R. Secondly, therobot can hit O's boundary at an unexplored node y and then traverse unexplored boundary edgesuntil an endpoint of � is reached. In this case, the robot will return to y and explore boundary edgesstarting from y until dist = R. In both cases the path traverses R edges and in the extended segment�0, for at least b l2c+ 1 + 1 � b l+12 c+ 1 fragments, the associated paths traverse R edges.For the analysis of case (2), let �1 and �2 be two segments consisting of l1 and l2 fragments. Thepath Qi joining �1 and �2 does not necessarily traverse R edges. However, b l12 c + 1 + b l22 c + 1 �b l1+l2+12 c+ 1 for all combinations of odd end even l1; l2. Thus the above statement holds. 215



Lemma 6 The number of paths Qi that traverse R = (3+�)r edges is at least as large at the numberof paths that traverse less than R edges.Proof: A path only traverses less than R edges if it hits a partially mapped obstacle during anexecution of Map-Obstacles and explores edges between two explored segments. In this case the robotmight return to s before R edges are traversed (see Proposition 1). Thus every path that traversesless than R edges ends on the boundary of an obstacle and the associated fragment belongs to anexplored segment with at least two fragments. Lemma 5 states that for any obstacle with at least twofragments, the number of fragments that represent paths of length R is as least as large as the numberof fragments that represent paths of length < R. The lemma follows because every path Qi exploresat most one obstacle whose boundary consists of at least two fragments. 2Theorem 4 The Ray algorithm explores a grid with arbitrary obstacles using O(jEj) edge traversals.Proof: During the execution of the Ray algorithm at most 4jEj fresh edges are traversed. There arejEj edge traversals across new edges that are explored after the traversal. In executions of Shoot-Rays,every edge is traversed at most three times. An edge is traversed twice when the robot moves alongvertical rays in line 4 or backtracks in line 13. An edge on the boundary of an obstacle can be traversedonce more in lines 10 or 12. Lemma 4 implies that that there can be at most 2�4jEj�r paths Qi thattraverse R edges. By Lemma 6 the number of paths that travese less than R edges is bounded by thesame number. Thus PNi=1 jQij � 16jEj�r (3 + �)r 2 O(jEj). 24 ConclusionsIn this paper we presented a lower bound of 
(pn) on the competitive ratio achieved by any onlinealgorithm to explore a scene with n axis-parallel rectangles, thus disproving a conjecture by Deng,Kameda, and Papadimitriou [5]. Our construction consists of �(pn) stages each of which contains�(pn) rectangles. The aspect ratio of the rectangles used in our construction is exponential in pn.This raises the interesting open question whether it is possible to explore scenes with a constantcompetitive ratio if the aspect ratio of the obstacles is bounded by a constant as, for instance, inscenes consisting of squares.Secondly, we presented an algorithm for piecemeal exploration of grids with arbitrary (rectilinear)obstacles. Our algorithm uses O(jEj) edge traversals if the robot is able to travel a distance of 2(3+�)r,for some constant � > 0, between two consecutive visits to a start node s. Here r is the maximum ofall shortest path distances between s and any other node in the graph. It is an open question whethera grid with arbitrary obstacles can be explored with O(jEj) edge traversals if the robot can only travela distance of 6r or less.References[1] S. Albers and M. Henzinger. Exploring unknown environments. Proc. 29th Annual ACM Sympo-sium on Theory of Computing, pages 416{425, 1997.[2] B. Awerbuch, M. Betke, R. Rivest and M. Singh. Piecemeal graph learning by a mobile robot.Proc. 8th Conference on Computational Learning Theory, pages 321{328, 1995.[3] M. Betke, R. Rivest and M. Singh. Piecemeal learning of an unknown environment. Proc. 5thConference on Computational Learning Theory, pages 277{286, 1993.16



[4] M. Bender and D. Slonim. The power of team exploration: two robots can learn unlabeled directedgraphs. Proc. 35th Symposium on Foundations of Computer Science, pages 75{85, 1994.[5] X. Deng, T. Kameda and C. H. Papadimitriou. How to learn an unknown environment. Journalof the ACM, 45:215{245, 1998.[6] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Proc. 31st Symposium on Foun-dations of Computer Science, pages 356{361, 1990.[7] F. Ho�mann. Private communication, 1997.[8] F. Ho�mann, C. Icking, R. Klein and K. Kriegel. A competitive strategy for learning a polygon.Proc. 8th ACM-SIAM Symposium on Discrete Algorithms, pages 166{174, 1997.[9] F. Ho�mann, C. Icking, R. Klein and K. Kriegel. The polygon exploration problem: A new strat-egy and a new analysis technique. Proc. 3rd International Workshop on Algorithmic Foundationsof Robotics, 1998.[10] B. Kalyanasundaram and K. Pruhs. A competitive analysis of algorithms for searching unknownscenes. Computational Geometry and Applications, 3:139{155, 1993.[11] J. Kleinberg. On-line search in a simple polygon. Proc. 5th Annual ACM-SIAM Symposium onDiscrete Algorithms, pages 8{15, 1994.[12] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical ComputerScience, 84:127{150, 1991.[13] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Communica-tion of the ACM, 28:202{208, 1985.[14] A.C.-C. Yao. Probabilistic computations: Towards a uni�ed measure of complexity. Proc. 17thAnnual IEEE Symposium on Foundations of Computer Science, pages 222-227, 1977.

17



AppendixWe show how to handle some generalizations. If an edge in the graph belongs to the boundary of twoobstacles, we simply keep a copy of the edge for each obstacle. When exploring boundary edges inMap-Obstacles the robot has to keep track, which copy of the edge is explored. The number of edgetraversals increases by a factor of at most 2.Suppose that start node s is an arbitrary node in the grid. Let L be the horizontal line throughs and let L1; : : : ; Ln be the segments of L that lie entirely in the grid. First the robot explores thesegments L1; : : : ; Ln and the exterior boundary of the scene. While doing so, it also explores obstaclesO1; : : : ; Ok that intersect L.The robot then explores the upper part of the scene by traversing rays in northern direction startedfrom L1; : : : ; Ln and from the open segments in O1; : : : ; Ok that are to the north of L. Symmetrically,the robot explores the lower part of the scene by exploring rays in the southern direction. The totalnumber of edge traversal is still O(jEj).
L1 L2 L3 L5Start L4
Figure 12: Start node s is an arbitrary node.In a similar way we can handle the case that the exterior boundary is not a rectangle or thatobstacles touch the boundary. After the robot has explored the exterior boundary of the scene, itexplores rays from all horizontal segments of the exterior boundary and from the open segments ofthe obstacles that touch the boundary.

18


