
Competitive Online Approximation of the
Optimal Search Ratio�

Rudolf Fleischer1��, Tom Kamphans2, Rolf Klein2, Elmar Langetepe2, and
Gerhard Trippen3��

1 fleischer@acm.org.
2 University of Bonn, Institute of Computer Science I, D-53117 Bonn, Germany.

[kamphans,rolf.klein,langetep]@informatik.uni-bonn.de.
3 The Hong Kong University of Science and Technology, CS Dept., Hong Kong.

trippen@cs.ust.hk.

Abstract. How efficiently can we search an unknown environment for
a goal in unknown position? How much would it help if the environment
were known? We answer these questions for simple polygons and for
general graphs, by providing online search strategies that are as good
as the best offline search algorithms, up to a constant factor. For other
settings we prove that no such online algorithms exist.

1 Introduction

One of the recurring tasks in life is to search one’s environment for an object
whose location is —at least temporarily—unknown. This problem comes in dif-
ferent variations. The searcher may have vision, or be limited to sensing by touch.
The environment may be a simple polygon, e. g., an apartment, or a graph, like
a street network. Finally, the environment may be known to the searcher, or be
unknown.

Such search problems have attracted a lot of interest in online motion plan-
ning, see for example the survey by Berman [4]. Usually the cost of a search is
measured by the length of the search path traversed; this in turn is compared
against the length of the shortest path from the start position to the point where
the goal is reached. If we are searching in an unknown environment, the max-
imum quotient, over all goal positions and all environments, is the competitive
ratio of the search algorithm.

Most prominent is the problem of searching two half-lines emanating from a
common start point. The “doubling” strategy visits the half-lines alternatingly,
� The work described in this paper was partially supported by a grant from the Ger-

many/Hong Kong Joint Research Scheme sponsored by the Research Grants Coun-
cil of Hong Kong and the German Academic Exchange Service (Project No. G-
HK024/02).

�� The authors were partially supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project
No. HKUST6010/01E) and by the RGC Direct Allocation Grant DAG03/04.EG05.

S. Albers and T. Radzik (Eds.): ESA 2004, LNCS 3221, pp. 335–346, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

336 R. Fleischer et al.

each time doubling the depth of exploration. This way, the goal point is reached
after traversing a path at most 9 times as long as its distance from the start,
and the competitive ratio of 9 is optimal for this problem; see Baeza-Yates et
al. [3] and Alpern and Gal [2]. This doubling approach frequently appears as a
subroutine in more complex navigation strategies.

In searching m > 2 half-lines, a constant ratio with respect to the distance
from the start can no longer be achieved. Indeed: Even if the half lines were
replaced by segments of the same finite length, the goal could be placed at
the end of the segment visited last, causing the ratio to be at least 2m − 1.
Exponentially increasing the exploration depth by m/m − 1 is known to lead to
an optimal competitive ratio of C(m) = 1 + 2m

(
m

m−1

)m−1 ≤ 1 + 2me.
Much less is known about more realistic settings. Suppose a searcher with vi-

sion wants to search an unknown simple polygon for a goal in unknown position.
He could employ the m−way technique from above: By exploring the shortest
paths from the start to the m reflex vertices of the polygon—ignoring their tree
structure—a competitive ratio of C(m) can easily be achieved [13]. Schuierer [15]
has refined this method and obtained a ratio of C(2k), where k denotes the small-
est number of convex and concave chains into which the polygon’s boundary can
be decomposed.

But these results do not completely settle the problem. For one, it is not clear
why the numbers m or k should measure the difficulty of searching a polygon.
Also, human searchers easily outperform m−way search, because they make
educated guesses about the shape of those parts of the polygon not yet visited.

In this paper we take the following approach: Let π be a search path for the
fixed polygon P , i. e., a path from the start point, s, through P from which each
point p inside P will eventually be visible. Let riseπ(p) be the first point on π
where this happens. The cost of getting to p via π equals the length of π from s to
riseπ(p), plus the Euclidean distance from riseπ(p) to p. We divide this value by
the length of the shortest s−to−p path in P . The maximum of these ratios, over
all p ∈ P , is the search ratio of π. The lowest search ratio possible, over all search
paths, is the optimum search ratio of P ; it measures the “searchability” of P .

Koutsoupias et al. [14] studied graphs with unit length edges where the goal
can only be located at vertices, and they only studied the offline case, i. e., with
full a priori knowledge of the graph. They showed that computing the optimal
search ratio offline is an NP-complete problem, and gave a polynomial time
8-approximation algorithm based on the doubling heuristic.

The crucial question we are considering in this paper is the following: Is
it possible to design an online search strategy whose search ratio stays within
a constant factor of the optimum search ratio, for arbitrary instances of the
environment? Surprisingly, the answer is positive for simple polygons as well as
for general graphs. (However, for polygons with holes, and for graphs with unit
edge length, where the goal positions are restricted to the vertices, no such online
strategy exists.)

Note that search ratio and competitive ratio have very similar definitions,
but they are actually rather different concepts. For the competitive ratio, an

Competitive Online Approximation of the Optimal Search Ratio 337

online search algorithm has no idea how the environment looks like and has to
learn it while searching for the goal. In contrast, the search ratio is defined for
a given fixed environment. Since the optimal search ratio path minimizes the
quotient of search distance over shortest distance to the goal, the optimal search
ratio is actually a lower bound for the competitive search ratio of any online
search algorithm. Computing online a c-approximation of the optimal search
ratio path means we compute online a search path whose competitive ratio is
at most a factor of c worse than the optimal competitive ratio of any online
search algorithm, but that does not tell us anything about the competitive ratio
itself which could be arbitrarily bad. In some special cases, we can search with a
constant competitive ratio, for example on the line optimally 9-competitive (the
Lost-Cow problem [3]) and in street polygons optimally

√
2-competitive [12,16].

The search strategies we will present use, as building blocks, modified versions
of constant-competitive strategies for online exploration, namely the exploration
strategy by Hoffmann et al. [11] for simple polygons, and the tethered graph
exploration strategy by Duncan et al. [9].

At first glance it seems quite natural to employ an exploration strategy in
searching—after all, either task involves looking at each point of the environ-
ment. But there is a serious difference in performance evaluation! In searching
an environment, we compete against shortest start-to-goal paths, so we have to
proceed in a BFS manner. In exploration, we are up against the shortest round
trip from which each point is visible; this means, once we have entered some
remote part of the environment we should finish it, in a DFS manner, before
moving on. However, we can fit these exploration strategies to our search prob-
lem by restricting them to a bounded part of the environment. This will be
shown in Section 3 where we present our general framework, which turns out to
be quite elegant despite the complex definitions. The framework can be applied
to online and offline search ratio approximations. In Section 2 we review basic
definitions and notations. Our framework will then be applied to searching in
various environments like trees, (planar) graphs, and (rectilinear) polygonal en-
vironments with and without holes in Sections 4 and 5. Finally, in Section 6, we
conclude with a summary of our results (see also Table 1).

2 Definitions

We want to find a good search path in some given environment E . This might
be a tree, a (planar) graph, or a (rectangular) polygon with or without holes.
In a graph environment, the edges may either have unit length or arbitrary
length. Edge lengths do not necessarily represent Euclidean distances, not even
in embedded planar graphs. In particular, we do not assume that the triangle
inequality holds.

The goal set, G, is the set of locations in the environment where the (station-
ary!) goal might be hidden. If E is a graph G = (V, E), then the goal may be
located on some edge (geometric search), i. e., G = V ∪ E, or its position may
be restricted to the vertices (vertex search), i. e., G = V . To explore E means to

338 R. Fleischer et al.

Table 1. Summary of our approximation results, where α > 0 is an arbitrary
constant. The entry marked with * had earlier been proven by Koutsoupias et al. [14].
They had also shown that computing the optimal search path is NP-complete for
(planar) graphs. It is also NP-complete for polygons, whereas it is not known to be
NP-complete for trees.

Polytime approximation ratioEnvironment Edge length Goal
Online Offline

Tree unit, arbitrary vertex, geometric 4 4

Planar graph arbitrary vertex no search-competitive alg. 8

Planar graph unit vertex 104 + 40α + 64
α

4

General graph unit vertex no search-competitive alg. 8∗

General graph arbitrary geometric 48 + 16α + 32
α

4

Simple polygon 212 8

Rect. simple polygon 8
√

2 8

Polygon with rect. holes no search-competitive alg. ?

move around in E until all potential goal positions G have been seen. To search
E means to follow some exploration path in E , the search path, until the goal
has been seen. We assume that all search and exploration paths return to the
start point, s, and we make the usual assumption that goals must be at least a
distance 1 away from the start point.1

For d ≥ 1, let E(d) denote the part of E in distance at most d from s. A
depth-d restricted exploration explores all potential goal positions in G(d). The
exploration path may move outside E(d) as long as it stays within E . Depth-d
restricted search is defined accordingly.

It remains to define what it means that the searcher “sees” the goal. In graph
searching, agents are usually assumed to be blind, i. e., standing at a vertex of
a directed graph the agent sees the set of outgoing edges, but neither their
lengths nor the position of the other vertices are known. Incoming edges cannot
be sensed; see [7]. Blind agents must eventually visit all points in the goal set.

Polygon searchers are usually assumed to have vision, that is, they always
know the current visibility polygon. Such agents need not visit a goal position
if they can see it from somewhere else. Searching a polygon means to visit all
visibility cuts, i. e., all rays extending the edges of the reflex vertices. Actually,
there is always a subset of the cuts, the essential cuts, whose visit guarantees
that all other cuts are also visited on the way.

In case of online algorithms, we assume that agents have perfect memory.
They always know a map of the part of E already explored, and they can always
recognize when they visit some point for the second time, i. e., they have perfect
localization (the robot localization problem is actually a difficult problem by
itself, see for example [10]).

1 If goals could be arbitrarily close to s, no algorithm could be competitive.

Competitive Online Approximation of the Optimal Search Ratio 339

We now introduce a few notations. Let π be a path in the environment E .
For a point p ∈ π let π(p) denote the part of π between s and p, and sp(p) the
shortest path from s to p in E . We denote the length of a path segment π(p) by
|π(p)|. Paths computed by some algorithm A will be named A, too. For a point
p ∈ E let riseπ(p) denote the point q ∈ π from which p is seen for the first time
when moving along π starting at s, see Fig. 1.

qπ

p

s

Fig. 1. A search path π in a polygon, visiting all essential cuts (the dotted lines). The
dashed path is the shortest path sp(p) from s to the goal p. Moving along π, p can first
be seen from q = riseπ(p).

The quality of a search path is measured by its search ratio sr(π), defined as
sr(π) := max

p∈G
|π(q)|+|qp|

| sp(p)| , where q = riseπ(p). Note that q = p for blind agents.

An optimal search path, πopt, is a search path with a minimum search ratio
sropt = sr(πopt).

Since the optimal search path seems hard to compute [14], we are interested
in finding good approximations of the optimal search path, in offline and online
scenarios. We say a search path π is C-search-competitive (with respect to the
optimal search path πopt) if sr(π) ≤ C ·sr(πopt). Note that π is then a C ·sr(πopt)-
competitive search algorithm (in the usual competitive sense).

3 A General Approximation Framework

In this section we will show how to transform an exploration algorithm, offline or
online, into a search algorithm, without losing too much on the approximation
factor.

Let E be the given environment and πopt an optimal search path. We assume
that, for any point p, we can reach s from p on a path of length at most sp(p).2

For d ≥ 1, let Expl(d) be a family of depth-d restricted exploration algorithms
for E , either online or offline. Let OPT and OPT(d) denote the corresponding
optimal offline depth-d restricted exploration algorithms.
2 Note that this is not the case for directed graphs, but it holds for undirected graphs

and polygonal environments. We will see later that there is no constant-competitive
online search algorithm for directed graphs, anyway.

340 R. Fleischer et al.

Definition 1. The family Expl(d) is DREP (depth restricted exploration prop-
erty) if there are constants β > 0 and Cβ ≥ 1 such that, for any d ≥ 1, Expl(d)
is Cβ-competitive against the optimal algorithm OPT(βd), i. e., |Expl(d)| ≤
Cβ · |OPT(βd)|. ��

In the normal competitive framework we would compare Expl(d) to the op-
timal algorithm OPT(d), i. e., β = 1. As we will see later, our more general
definition makes it sometimes easier to find DREP exploration algorithms. Usu-
ally, we cannot just take an exploration algorithm Expl for E and restrict it to
points in distance at most d from s. This way, we might miss useful shortcuts
outside of E(d). Even worse, it may not be possible to determine in an online set-
ting which parts of the environment belong to E(d), making it difficult to explore
the right part of E . In the next two sections we will derive DREP exploration
algorithms for graphs and polygons by carefully adapting existing exploration
algorithms for the entire environment.

To obtain a search algorithm for E we use the doubling strategy. For i =
1, 2, 3, . . ., we successively run the exploration algorithm Expl(2i), each time
starting at s.

Theorem 1. The doubling strategy based on a DREP exploration strategy is a
4βCβ-search-competitive (plus an additive constant) search algorithm for blind
agents, and a 8βCβ-search-competitive (plus an additive constant) search algo-
rithm for agents with vision.

Proof. Consider one iteration of the doubling strategy with search radius d ≥ 1.
Let last(d) be the point on the optimal search path πopt for E from which we
see the last point in distance at most d from s when moving along πopt. If
the agent has vision, last(d) could lie outside of E(d). Note that |OPT(d)| ≤
|πopt(last(d))| + | sp(last(d))|. For a blind agent we have sp(last(d)) ≤ d. Thus,
sropt ≥ πopt(last(d))

d ≥ |OPT(d)|−d
d , or |OPT(d)| ≤ d · (sropt + 1). If the goal is in

distance 2j+ε for some small ε > 0, then the search ratio of the doubling strategy

is bounded by
∑j+1

i=1
|Expl(2i)|
2j ≤ Cβ ·

∑j+1

i=1
|OPT(β2i)|
2j ≤ Cβ ·

∑j+1

i=1
β2i·(sropt+1)

2j ≤
4βCβ · (sropt + 1).

If the agent has vision, we only know that | sp(last(d))| ≤ |πopt(last(d))|.
Thus, sropt ≥ |πopt(last(d))|

d ≥ |OPT(d)|
2d , or |OPT(d)| ≤ 2d · sropt. So in this case

we can bound the search ratio by
2j+

∑j+1

i=1
|Expl(2i)|

2j ≤ 1 + 8βCβ · sropt. ��
The only problem is now to find good DREP exploration algorithms for

various environments.

4 Searching Graphs

We distinguish between graphs with unit length vs. arbitrary length edges, pla-
nar vs. non-planar graphs, directed vs. undirected graphs, and vertex vs. geo-
metric search. We assume agents are blind, i. e., they can at any vertex only

Competitive Online Approximation of the Optimal Search Ratio 341

sense the number of outgoing edges but they cannot sense the incoming edges
and the endpoints of the outgoing edges. In the vertex search problem, we as-
sume w.l.o.g. that graphs do not have parallel edges. Otherwise, there can be no
constant-search-competitive vertex search algorithm. In Fig. 2(iv), the optimal
search path s → v → t → s has length 3, whereas any online search path can
be forced to cycle often between s and v before traversing the edge v → t. Note
that we also could use undirected edges.

4.1 Non-competitiveness Results

We first show that for many variants there is no constant-search-competitive
online search algorithm. Incidentally, there is also no constant-competitive online
exploration algorithm for these graph classes. Note that non-search-competitive-
ness for planar graphs implies non-search-competitiveness for general graphs,
non-search-competitiveness for unit length edges implies non-search-competitive-
ness for arbitrary length edges, and non-search-competitiveness for undirected
graphs implies non-search-competitiveness for directed graphs (we could replace
each undirected edge with directed edges in both directions).

Theorem 2. For blind agents, there is no constant-search-competitive online
vertex search algorithm for (i) non-planar graphs, (ii) directed planar graphs,
(iii) planar graphs with arbitrary edge lengths. Further, there is no constant-
search-competitive online geometric search algorithm for directed graphs with
unit length edges.

Proof. It is not difficult to verify the claims on the graphs in Fig. 2(i)-(iii). ��

(iv)

vs t
ε
ε
ε

s t
11

(iii)(ii)(i)

11
tvs

Fig. 2. Lower bound constructions of Theorem 2.

4.2 Competitive Search in Graphs

In this subsection we will present search-competitive online and offline search
algorithms for the remaining graph classes. We assume in this subsection that
graphs are always undirected.

342 R. Fleischer et al.

Trees. On trees, DFS is a 1-competitive online exploration algorithm for vertex
and geometric search that is DREP; it is still 1-competitive when restricted to
search depth d, for any d ≥ 1. Thus, the doubling strategy gives a polynomial
time 4-search-competitive search algorithm for trees, online and offline. On the
other hand, it is an open problem whether the computation of an optimal vertex
or geometric search path in trees with unit length edges is NP-complete [14].

Competitive Graph Search Algorithms. We will now give competitive
search algorithms for planar graphs with unit length edges (vertex search) and
for general graphs with arbitrary length edges (geometric search). Both algo-
rithms are based on an online algorithm for online tethered graph exploration.

In the tethered exploration problem the agent is fixed to the start point by a
restricted length rope. An optimal solution to this problem was given by Duncan
et al. [9]. Their algorithm can explore an unknown graph with unit length edges
in 2|E| + (4 + 16

α)|V | edge traversals, using a rope length of (1 + α)d, where
d is the distance of the point farthest away from the start point and α > 0 is
some parameter. As they pointed out, the algorithm can also be used for depth
restricted exploration. To explore all edges in G((1 + α)d), for d ≥ 1, their
algorithm uses at most 2|E((1 + α)d)| + (4 + 16

α)|V ((1 + α)d)| edge traversals
using a rope of length (1+α)d. Let us call this algorithm Expl(d). The algorithm
explores the graph in a mixture of bounded-depth DFS on G, DFS on some
spanning tree of G, and recursive calls to explore certain large subgraphs. The
bound for the number of edge traversals can intuitively be explained as follows:
bounded-depth DFS visits each edge at most twice, thus the term 2|E((1+α)d)|;
DFS on the spanning tree visits every node at most twice, but nodes can be in
two overlapping spanning trees, thus the term 4|V ((1+α)d)|; relocating between
recursive calls does not happen too often (because of the size of the subgraphs),
giving the term 16

α |V ((1 + α)d)|.
We note that Expl(d) can be modified to run on graphs with arbitrary length

edges. Then we do not bound the number of edge traversals, but the total length
of all traversed edges. Let length(E) denote the total length of all edges in E.
It is possible to adapt the proofs in [9] to prove the following lemma.

Lemma 1. In graphs with arbitrary length edges, Expl(d) explores all edges
and vertices in G(d) using a rope of length (1 + α)d at a cost of at most (4 +
8
α) · length(E((1 + α)d)).

Proof. (Sketch) Intuitively, DFS and bounded-depth DFS traverse each edge
at most twice, thus the term 4 ·length(E((1+α)d)); relocating between recursive
calls does not happen too often and subgraphs do not overlap (at least not their
edges), thus the term 8

α · length(E((1 + α)d)). ��
Lemma 2. In planar graphs with unit length edges, Expl(d) is a DREP online
vertex exploration algorithm with β = 1 + α and Cβ = 10 + 16

α .

Proof. E((1 + α)d) ≤ 3V ((1 + α)d) − 6 by Euler’s formula. Thus, the number of
edge traversals is at most (10+ 16

α)V ((1+α)d). On the other hand, OPT((1+α)d)
must visit each vertex in V ((1 + α)d) at least once. ��

Competitive Online Approximation of the Optimal Search Ratio 343

Theorem 3. The doubling strategy based on Expl(d) is a (104 + 40α + 64
α)-

search-competitive online vertex search algorithm for blind agents in planar

graphs with unit length edges. The competitive ratio is minimal for α =
√

16
10 . ��

Lemma 3. In general graphs with arbitrary length edges, Expl(d) is a DREP
online geometric exploration algorithm with β = 1 + α and Cβ = 4 + 8

α .

Proof. The total cost of Expl(d) is at most (4+ 8
α) · length(E((1+α)d)) by Lem-

ma 1. On the other hand, OPT((1+α)d) must traverse each edge in E((1+α)d)
at least once. ��

Theorem 4. The doubling strategy based on Expl(d) is a (48 + 16α + 32
α)-

search-competitiveonline geometric search algorithm for blind agents in general
graphs with arbitrary length edges. ��

5 Searching Polygons

5.1 Simple Polygons

A simple polygon P is given by a closed non-intersecting polygonal chain. We
assume that agents have vision. To apply our framework we need a DREP online
exploration algorithm Explonl(d).

vl vr

cvl

(i)
s

P (d)

3
2d 4

s

P (d)

Fig. 3. (i) PE(d) explores the left reflex vertex vl along a circular arc (1), returns
to the start (2) and explores the right reflex vertex vr likewise (3)+(4). On the other
hand, the shortest exploration path for P (d) in P , the dashed line, leaves P (d). But
we can extend P (d) by the circular arc. (ii) PE(d) leaves P (d) whereas the shortest
exploration path for P (d) lies inside P (d).

The only known algorithm, PE , for the online exploration of a simple polygon
by Hoffmann et al. [11] achieves a competitive ratio of 26.5. Now we must adapt

344 R. Fleischer et al.

this algorithm to depth restricted exploration. The undetected parts of P always
lie behind cuts cv emanating from reflex vertices v. These reflex vertices are
called unexplored as long as we have not visited the corresponding cut cv. We
modify PE so that it explores P only up to distance d from s. The algorithm
always maintains a list of unexplored reflex vertices and successively visits the
corresponding cuts. While exploring a reflex vertex (along a sequence of line
segments and circular arcs), more unexplored reflex vertices may be detected or
unexplored reflex vertices may become explored. These vertices are inserted into
or deleted from the list, respectively. In PE (d), unexplored reflex vertices in a
distance greater than d from the start will be ignored, i. e., although they may
be detected they will not be inserted into the list. Let OPT(P, d) be the shortest
path that sees all points in P (d).

Note that OPT(P, d) and PE (d) may leave P (d), see Fig. 3. Nevertheless,
it is possible to adapt the analysis of Hoffmann et al. There are actually two
ways to do this. Either we enlarge P (d) without creating new reflex vertices
such that the larger polygon contains OPT(P, d) and PE (d). Or we redo the
analysis of Hoffmann et al. in P restricted to OPT(P, d) and PE (d), which is
possible. In the former case we can use some sort of extended boundary around
the boundary of P (d) such that the enlarged polygon contains PE (d) and
OPT(P, d), see the convex enlargements in Fig. 3. It may happen that these
new extensions overlap for different parts of P (d). However, this does not affect
the analysis of Hoffmann et al.

Lemma 4. In a simple polygon, PE (d) is a DREP online exploration algorithm
with β = 1 and Cβ = 26.5. ��

Theorem 5. The doubling strategy based on PE (d) is a 212-search-competitive
online search algorithm for an agent with vision in a simple polygon. There is
also a polynomial time 8-search-competitive offline search algorithm.

Proof. The online search-competitiveness follows from Lemma 4 and Theorem 1.
If we know the polygon, we can compute OPT(P, d) in polynomial time by

adapting a corresponding algorithm for P . Every known polynomial time offline
exploration algorithm builds a sequence of the essential cuts, see for example [5,
18,17,8]. Any of these algorithms could be used in our framework. Since an
optimal algorithm has approximation factor C = 1, our framework yields an
approximation of the optimal search ratio within a factor of 8.

If we skip a step with distance 2i if there is no reflex vertex within a distance
between 2i−1 and 2i, the total running time is bounded by a polynomial in the
number of the vertices of P . ��

Now the question arises whether there is a polynomial time algorithm that
computes the optimal search path in a simple polygon. All essential cuts need
to be visited, so we can try to visit them in any possible order. However, we do
not know where exactly we should visit a cut. We are not sure whether there are
only a few possibilities (similar to the shortest watchman route problem), i. e.,

Competitive Online Approximation of the Optimal Search Ratio 345

whether this subproblem is discrete. So the problem of efficiently computing an
optimal search path in a polygon is still open.

For rectilinear simple polygons we can find better online algorithms based on
a

√
2-competitive online exploration algorithm by Papadimitriou et al. [6] which

can be made DREP by ignoring reflex vertices farther away than d. Again, no
polynomial time algorithm for the optimal search path is known.

Theorem 6. For an agent with vision in a simple rectilinear polygon there is a
8
√

2-search-competitive online search algorithm. There is also a polynomial time
8-search-competitive offline search algorithm. ��

5.2 Polygons with Holes

We will show that there is no constant-search-competitive online search algo-
rithm for polygons with rectangular holes. It was shown by Albers et al. [1] that
there is no constant-competitive online exploration algorithm for polygons with
rectangular holes. For k ≥ 2, they filled a rectangle of height k and width 2k
with O(k2) rectangular holes such that the optimal exploration tour has length
O(k), whereas any online exploration algorithm needs to travel a distance of
Ω(k2). The details of the construction are not important here. We just note that
it has the property that any point p is at most at distance 3k from the start
point, which is in the lower left corner of the bounding rectangle.

Theorem 7. For an agent with vision in a polygon with rectangular holes there
is no constant-search-competitive online search algorithm.

Proof. We extend the construction of Albers et al. by making the bounding
rectangle larger and placing a new hole of height k and width 2k just below all
the holes of the previous construction. The new start point s is again in the
lower left corner of the bounding rectangle. Any point that is not immediately
visible from s has at least distance k from s. ��

Since the offline exploration problem is NP-complete (by straightforward
reduction from planar TSP) we cannot use our framework to obtain a polynomial
time approximation algorithm of the optimal search path. However, there is an
exponential time 8-approximation algorithm. We can list the essential cuts of
OPT(P, d) in any order to find the best one. Application of our framework then
gives an approximation factor of 8 for the optimal search ratio.

The results of Koutsoupias et al. [14] imply that the offline problem of com-
puting an optimal search path in a known polygon with (rectangular) holes is
NP-complete.

6 Conclusion and Open Problems

We have introduced a framework for computing online and offline approxima-
tions of the optimal search path graph and polygonal environments. We have

346 R. Fleischer et al.

obtained fairly simple proofs of the existence of approximation strategies and
their approximation factors, although the factors are quite high. We have also
shown that some environments do not have constant-search-competitive online
search strategies. Our framework would also work for randomized algorithms,
but there are not many randomized exploration algorithms around. For some of
the settings it remains open whether the offline optimization problem is NP-hard.

References

1. Susanne Albers, Klaus Kursawe, and Sven Schuierer. Exploring unknown environ-
ments with obstacles. In Proc. 10th SODA, pp. 842–843, 1999.

2. Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous.
Kluwer Academic Publications, 2002.

3. R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform.
Comput., 106:234–252, 1993.

4. Piotr Berman. On-line searching and navigation. In A. Fiat and G. Woeginger,
eds., Competitive Analysis of Algorithms. Springer, 1998.

5. W.-P. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Discrete
Comput. Geom., 6(1):9–31, 1991.

6. Xiaotie Deng, Tiko Kameda, and Christos Papadimitriou. How to learn an un-
known environment I: The rectilinear case. Journal of the ACM, 45(2):215–245,
1998.

7. Xiaotie Deng and Christos H. Papadimitriou. Exploring an unknown graph. Jour-
nal of Graph Theory, 32:265–297, 1999.

8. M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Touring a sequence of polygons.
In Proc. 35th STOC, pp. 473–482, 2003.

9. Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal
constrained graph exploration. In Proc. 12th SODA, pp. 307–314, 2001.

10. Rudolf Fleischer, Kathleen Romanik, Sven Schuierer, and Gerhard Trippen. Opti-
mal robot localization in trees. Information and Computation, 171:224–247, 2001.

11. Frank Hoffmann, Christian Icking, Rolf Klein, and Klaus Kriegel. The polygon
exploration problem. SIAM Journal on Computing, 31:577–600, 2001.

12. Christian Icking, Rolf Klein, and Elmar Langetepe. An optimal competitive strat-
egy for walking in streets. In Proc. 16th STACS, LNCS 1563, pp. 110–120. Springer,
1999.

13. R. Klein. Algorithmische Geometrie. Addison-Wesley Longman, 1997.
14. Elias Koutsoupias, Christos H. Papadimitriou, and Mihalis Yannakakis. Searching

a fixed graph. In Proc. 23th ICALP, LNCS 1099, pp. 280–289. Springer, 1996.
15. S. Schuierer. On-line searching in simple polygons. In H. Christensen, H. Bunke,

and H. Noltemeier, eds., Sensor Based Intelligent Robots, LNAI 1724, pp. 220–239.
Springer, 1997.

16. Sven Schuierer and Ines Semrau. An optimal strategy for searching in unknown
streets. In Proc. 16th STACS, LNCS 1563, pp. 121–131. Springer, 1999.

17. X. Tan, T. Hirata, and Y. Inagaki. Corrigendum to “an incremental algorithm
for constructing shortest watchman routes”. Internat. J. Comput. Geom. Appl.,
9(3):319–323, 1999.

18. X. H. Tan, T. Hirata, and Y. Inagaki. An incremental algorithm for constructing
shortest watchman routes. Internat. J. Comput. Geom. Appl., 3(4):351–365, 1993.

	Introduction
	Definitions
	A General Approximation Framework
	Searching Graphs
	Non-competitiveness Results
	Competitive Search in Graphs

	Searching Polygons
	Simple Polygons
	Polygons with Holes

	Conclusion and Open Problems

