Online Motion Planning, WT 13/14 Exercise sheet 5
 University of Bonn, Inst. for Computer Science, Dpt. I

- You can hand in your written solutions until Tuesday, 26.11., 14:15, in room E.06.

Exercise 13: Shortest s - t-paths

(4 points)
We consider a rectangle P as shown in Figure 1. Let a and b denote the

Figure 1: Rectangle P
width and height of P. Points s and t are centered at the low and high horizontal boundary edge of P. Furthermore, we are given two point sets $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$ and $R=\left\{r_{1}, \ldots, r_{m}\right\}$ on the left and right vertical boundary edge of P. The points in the sets $L(R)$ are labelled such that point $\ell_{i}\left(r_{i}\right)$ is strictly higher than any other point $\ell_{j} \in L\left(r_{j} \in R\right)$, if $j<i$.
Prove that any shortest path in P from s to t, that visits every point in the set $L \cup R$ before ending at t, visits the points in L in ascending order and also visits the points in R in ascending order.

Please turn the page!

Exercise 14: Existence of triangulations

Prove that if a simple polygon P has at least 4 vertices, then in P there exists a line segment connecting two non-adjacent vertices of P. Furthermore show that this implies the existence of a triangulation of P.

Exercise 15: Visibility in arrangements of line segments (4 points)

a) Let P be a simple polygon of n vertices, and s be a point in P. Prove that the visibility polygon of s has a most n boundary edges.
$b)$ Prove that the lower envelope of a given set of n non-intersecting line segments consists of at most $2 n-1$ line segments.

