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Abstract. We address the problem of constrained exploration of an unknown graph G = (V, E) from
a given start node s with either a tethered robot or a robot with a fuel tank of limited capacity, the
former being a tighter constraint. In both variations of the problem, the robot can only move along
the edges of the graph, for example, it cannot jump between nonadjacent nodes. In the tethered robot
case, if the tether (rope) has length l, then the robot must remain within distance l from the start node
s. In the second variation, a fuel tank of limited capacity forces the robot to return to s after traversing
C edges. The efficiency of algorithms for both variations of the problem is measured by the number
of edges traversed during the exploration. We present an algorithm for a tethered robot that explores
the graph in �(|E |) edge traversals. The problem of exploration using a robot with a limited fuel tank
capacity can be solved with a simple reduction from the tethered robot case and also yields a �(|E |)
algorithm. This improves on the previous best-known bound of O(|E |+|V | log2 |V |). Since the lower
bound for the graph exploration problems is �(|E |), our algorithm is optimal within a constant factor.
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1. Introduction

Robot navigation is often modeled as the problem of exploring an unknown graph,
G = (V, E). The robot explores the graph beginning at a fixed start node s and
performing edge traversals. As the robot explores G it constructs a map of the
known portions of the graph. That is, once the robot has visited a node or traversed
an edge, it can recognize them if it encounters them again; this can be done by
marking the nodes [Fraigniaud et al. 2004] or using pebbles [Bender et al. 2002].
The graph G = (V, E) is explored once all the nodes in V have been visited and
all the edges in E have been traversed; we assume that the graph to be explored is
connected. The performance cost of a search algorithm is generally measured in
terms of the total number of exploration steps used by the robot to traverse all of the
edges. Let �(e) ≥ 0 denote the length of edge e. We say that the cost of exploring
e is �(e). If for all edges e, �(e) = 1, we have the unweighted case, where a trivial
lower bound for the cost of an exploration algorithm measured by the number of
edge traversals is |E |+|V |. The lower bound in the weighted case is |V |+∑

e �(e).
Almost all the results on graph exploration only pertain to unweighted graphs. For
the unconstrained exploration problem, the classical search algorithms, breadth-
first search (BFS) and depth-first search (DFS) (e.g., see Cormen et al. [1990]), are
optimal within a constant factor.

The piecemeal, or fuel-constrained, search model, introduced by Betke et al.
[1995], adds two natural constraints to the graph exploration problem:

Continuity. The robot must traverse a continuous path in the graph, that is,
it cannot jump from one point to another. This constraint is relevant in problems
where the traversal corresponds to physical exploration of terrain.

Interruptibility. The robot must return to the start node after traversing C steps.
C is typically at least 2(1 + β)r , where r is the distance to the farthest node from
the start node s and β is any nonnegative constant.

In this article, we consider another seemingly even more restricted problem of
graph exploration: exploration by a tethered robot with a rope of length l. In this
model, the robot is tied to the start node by a rope and is forced to match every
forward traversal of an edge with a backward traversal, rewinding the rope, in
a first-in last-out stack order. In practical terms, the rope can be a fuel line, a
communication line, or a safety line.

Although the tethered robot is not constrained to return to s periodically, it might
be forced to backtrack a great deal even to visit an adjacent node. However, the two
models, the fuel-constrained and tethered search, are equivalent within constant
factors, as shown in Section 2, that is, for appropriate rope and fuel constraints, the
performance costs are equivalent within constant factors.

Note that neither the fuel-constrained search problem nor the tethered robot
search problem can be solved using the classical search algorithms. BFS violates
the continuity constraint and DFS violates either the interruptibility constraint or
the maximum rope length, as shown in the examples of Awerbuch and Kobourov
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FIG. 1. Two example graphs illustrating failure of the DFS and BFS algorithms for constrained
graph exploration. In both graphs, the start node is labeled s, and the other nodes are labeled by their
traversal order. (a) A wheel graph with radius one. A Depth-First Search on this graph would require
a rope of length n. (b) A single path with start node at the center of the path. A Breadth-First Search
on this graph requiring continuity would take �(n2) exploration steps.

[1998]; see Figure 1. We show how to solve both the piecemeal search and the
tethered robot search problems by a conceptually simple Closest First Exploration
(CFX) algorithm.

This article expands on the results presented in the extended abstract [Duncan
et al. 2001]. In addition to providing detailed proofs for all the claims, we introduce
a new version of the problem involving unknown graphs with weighted edges.

1.1. PREVIOUS WORK. Exploration and navigation in unknown terrains is a
well-studied problem; see the survey of Rao et al. [1993]. Exploration in geometric
settings has been studied by Blum et al. [1997], Bar-Eli et al. [1994], Deng et al.
[1998], and Hoffmann et al. [2002]. Papadimitriou and Yanakakis [1991] consider
finding shortest paths in various unknown graphs and Blum and Chalasani [2000]
give a “k-trip” shortest path algorithm.

Rivest and Schapire [1993] study a finite state model for exploration, while
Deng and Papadimitriou [1999] and Albers and Henzinger [1999] model it on a
directed graph. Bender and Slonim [1994] consider the problem with two cooper-
ating robots. Randomized robot navigation was addressed by Berman et al. [1996].
Exploration by multiple robots has also been studied [Averbakh and Berman 1996,
1997; Fraigniaud et al. 2004].

In situations corresponding to physical settings the exploration is modeled by an
undirected graph. Without the two piecemeal constraints (continuity and interrupt-
ibility) an undirected graph can be explored with cost �(|E |+|V |) using either BFS
or DFS. Panaite and Pelc [1999] address the problem of minimizing the constants
in such linear-cost explorations, achieving a bound of |E | + �(|V |).

The problem of piecemeal (or fuel-constrained) exploration of an undirected
graph was introduced by Betke et al. [1995] where an O(|E | + |V |) algorithm
is presented for two classes of graphs: city-block graphs and grid graphs with
rectangular obstacles. Awerbuch et al. [1999a] present an O(|E |+|V |1+ε) algorithm
for general graphs and pose the open problem of finding a linear-cost algorithm
for general graphs. Awerbuch and Kobourov [1998] employ sparse neighborhood
covers [Awerbuch et al. 1999b] in an O(|E | + |V | log2 |V |) algorithm.

The problem of finding a linear-cost algorithm has been open not only for general
graphs but even for special classes of graphs such as planar graphs and grid graphs
with nonconvex obstacles.

1.2. OUR RESULTS. We settle the open problem posed in Awerbuch et al.
[1999a] by presenting an algorithm for fuel-constrained and tethered robot ex-
ploration that runs with cost �(|E |). We show that G can be explored by a tethered
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robot with cost �(|E |+|V |/α)1 using a rope of length (1+α)r , where α > 0 and r
is the radius, that is, the distance to the farthest node from the start node s. We show
in Section 2 that this implies an O(|E |/β) bound for fuel-constrained exploration
with a fuel tank of size 2(1 + β)r , for any β > α. Our bounds hold regardless of
whether r is known in advance. When the radius is not known in advance, it can be
determined incrementally.

We also consider the weighted case, where edges can be of varying lengths
and show that the cost is still O(

∑
e∈E �(e)), but with a rope of length roughly

(1 + α)r + �∗ where �∗ is the length of the longest edge. As demonstrated in
Figure 6, this bound is necessary. For a more precise definition, see Section 5.

The case with exploration of an unknown radius also leads to a solution for
the treasure hunting problem defined in Awerbuch et al. [1999a], which requires
searching for a treasure node t in an unknown infinite graph. Our algorithm solves
this problem with cost O(|G ′|), where G ′ is the subgraph induced by nodes within
a distance of (1 + α)d(s, t) from the start node, d(s, t) being the distance of the
treasure from s.

We describe the notation and the relationship between the two exploration models
in Section 2. In Section 3, we present and analyze the CFX algorithm that solves
the tethered graph exploration problem for unknown, unweighted graphs of known
radius. In Section 4, we present and analyze a simple modification for cases when
the radius is not known in advance. We also extend this solution to solve the treasure
hunting problem. In Section 5, we extend our results to unknown, weighted graphs
of unknown radius. Section 6 concludes with a few open problems.

2. Preliminaries

Let G = (V (G), E(G)) denote the (unweighted) graph to be explored with start
node s. When the graph is understood, we typically refer to the set of vertices and
edges as simply V and E . Let r , the radius of the graph, be equal to the distance
to the farthest node from s. For now, we assume that r is known, or at least is
bounded above by a known value. At every stage in our algorithms, we are also
concerned with the complete known subgraph G∗ ⊆ G consisting of all edges and
nodes visited so far.

Unless otherwise specified, for any graph H = (V (H ), E(H )), let |H | represent
the number of nodes, as opposed to edges, in the graph. We note the exception that,
for any path P , |P| represents the number of edges. Let PH (v, w) be the shortest path
in H between nodes v, w ∈ V . Let dH (v, w) = |PH(v, w)| represent the distance
between nodes v and w in H , that is, the number of edges in the path PH (v, w). We
also expand our definition to include the distance between sets of nodes U, W ⊆ V .
Let PH (U, W ) be the shortest path in H between any u ∈ U and w ∈ W . Similarly,
we define dH (U, W ) = minu∈U,w∈W dH (u, w) to be the minimum distance between
the two sets in H . In the same way, let �H(U, W ) = maxu∈U,w∈W dH (u, w) be the
maximum distance between U and W in H . For convenience, we often drop the set
notation for singleton sets. Thus, for u ∈ V and W ⊆ V , dH (u, W ) = dH({u}, W )
and �H(u, W ) = �H({u}, W ).

1 The inverse correlation between the cost and the terms α and β is due to the fact that the smaller the
rope length or fuel tank the more unwinding or refueling steps required to perform the exploration.
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Throughout our proofs, we use the following simple observation and related
variants. If H ⊆ G and u, v ∈ V (H ), then dG(u, v) ≤ dH (u, v) as any path in H
is also a path in G.

Our algorithm requires grouping subgraphs into rooted trees. When describing
such trees, we use the notation Tw to represent the tree rooted at vertex w .

Our tethered and piecemeal search algorithms require, respectively, a rope of
length (1+α)r and a fuel tank of size 2(1+β)r for any constants α, β > 0. Notice
that the fuel tank must be at least twice the radius to allow the robot to reach the
farthest node and return to the start node. As we show below, the two models are
related within constant factors, and so we only describe algorithms for the tethered
case.

LEMMA 2.1. The fuel-constrained exploration problem with a tank of size 2(1+
β)r can be reduced to the tethered exploration problem with a rope of length (1+α)r ,
for any β > α; the cost increases by a factor of 1+β

β−α
. Conversely, for any α > β,

the tethered exploration problem with a rope of length (1 + α)r can be reduced
to the fuel-constrained exploration problem with a tank of size 2(1 + β)r , with a
2(1+α)
α−β

factor increase in cost.

PROOF. We first describe the reduction from piecemeal search to a tethered
search. Let A be an algorithm that performs a tethered robot exploration, with a
rope of length (1+α)r , with cost T . An algorithm B for fuel-constrained exploration
with a tank of size 2(1 +β)r , with β > α can be obtained in the following manner.
Algorithm B emulates A with the addition that every 2(β − α)r steps it sends
the robot to s for refueling and back to the current node in A. Since the robot is
always within distance (1 + α)r to s, the amount of fuel needed to go to s and
back is at most 2(1 + α)r and the total fuel used between refuelings is at most
2(β − α)r + 2(1 + α)r = 2(1 + β)r . Since there is a refueling operation with cost
at most 2(1 +α)r after at least 2(β −α)r emulated steps of algorithm A, algorithm
B has cost at most T + T (1 + α)/(β − α) = T (1 + β)/(β − α).

Similarly, let B be an algorithm that performs a fuel-constrained exploration with
a tank of 2(1+β)r with cost T . To transform B into an an algorithm A for a tethered
robot exploration with a rope of length (1+α)r , we again emulate B. If at any time
the rope length used by the emulation A reaches (1 + α)r , A unwinds the robot, by
retreating to the root, and then takes the shortest known path back to the original
position and continues emulating. The key observation here is that the robot in B
must never go to a node where the known distance to the start node is more than
(1+β)r . The reason is that if the robot extends beyond this limit it cannot guarantee
a means to refuel in time. So after unwinding, when the robot in A reaches, via the
shortest known path, its original position to resume emulating, the remaining length
of rope is at least (1 + α)r − (1 + β)r = (α − β)r . This guarantees that another
unwinding step will not occur until after at least (α − β)r steps. Consequently, the
entire unwinding step has a cost of at most (1 + α)r + (1 + β)r and is executed
at most every (α − β)r steps. Therefore, the total cost of the emulation is at most
T + T (2 + α + β)/(α − β) = 2T (1 + α)/(α − β).

We note that the second emulation presented above does not take advantage
of the typically wasted refueling process, blindly emulating these refueling steps.
Ignoring these steps would only improve the constant factors. But, it also implies that
the tethered search is equivalent within constant factors to a distance-constrained
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FIG. 2. The recursive bDFX algorithm from node v with a remaining rope length of l.

search, whereby the robot is constrained to lie only within a given known distance
from the start node with no tether or fuel restriction.

3. Efficient Exploration of Unweighted Graphs

As mentioned above, we focus on the tethered robot case and assume that the robot
has a rope of length (1 + α)r for some α > 0 and with known radius r .

3.1. BOUNDED DEPTH FIRST EXPLORATION. Before presenting the optimal so-
lution for tethered robot exploration we briefly examine some related non-optimal
solutions, one of which is necessary in the final algorithm. Let us assume now that
the robot has a rope length l = |V |. For any graph G = (V, E) notice that r < |V |.
It is easy to explore a graph using a tethered robot with rope length l = |V | using a
DFS traversal. In fact, for a tethered robot with such rope length, DFS is optimal.
The algorithm takes exactly 2|E | steps as every edge is traversed twice, and, since a
tethered robot must backtrack over every step, this is optimal. If we allow the rope
to be of infinite length, the problem reverts to the unconstrained robot exploration.
Here, one may explore the graph optimally with a cost of |E | + �(|V |) [Panaite
and Pelc 1999]. However, if the length of the rope is O(r ), there are simple cases in
which the standard DFS fails [Awerbuch and Kobourov 1998]. More specifically,
the behavior of DFS is not well-defined when the robot reaches its maximum rope
length. It certainly cannot continue further, but how does it proceed?

One obvious solution is to allow the robot to ignore any edges it cannot reach and
proceed by backtracking, returning along the rope. Thus, the search has a bounded
depth constraint associated with it. For clarity and because our main solution builds
off of this simple notion, we present this bounded depth first exploration (bDFX)
algorithm in Figure 2.

We classify the edges of G into two types, explored and unexplored. Similarly,
the nodes are of four types, explored, unexplored, incomplete, and tagged. Initially,
every edge and node is unexplored. Incomplete nodes are those that have been
partially explored, but have some incident unexplored edges. Thus, a node becomes
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FIG. 3. An example of a bad graph traversal using bDFX. The nodes are labelled by their depth first
traversal order. Since node r has depth r at the time visited, the white nodes cannot be explored. After
exploring edge (s, r + 1), we discover a path between s and r with length only 3. However, in bDFX,
these edges (r + 1,r − 1) and (r − 1,r ) cannot be traversed again. Thus, the white nodes must remain
unexplored.

explored only when all of its incident edges are explored. Tagged nodes are used
by the bDFX algorithm to mark nodes on the search stack temporarily.

The recursive bDFX algorithm simply starts at a node v with a given rope length
l and, if l > 0, recursively visits all unexplored edges incident to v using a rope
of length l − 1. At the end of the call, the robot returns to its original position v
with the same initial rope length. From the algorithm, one can see that the amount
of steps taken by the robot is exactly 2|E ′| where E ′ is the set of edges marked
explored by bDFX.

At first glance, this simple modification may appear to solve the problem of
tethered exploration. Unfortunately, this is not the case, as shown in Figure 3. After
termination, the algorithm may leave many edges unexplored.

3.2. OPTIMAL TETHERED EXPLORATION. In order to completely explore the
graph, we enhance the bDFX algorithm to run in phases until all nodes and edges
are explored. Recall that at any stage G∗ ⊆ G is the subgraph consisting of all
visited edges and nodes, those labelled explored or incomplete. At each phase
in our algorithm, we maintain a collection T = {T1, T2, . . . ,Tk} of node disjoint
subtrees of G∗ whose union contains all currently incomplete nodes, possibly with
other nodes. Initially, this set consists of one subtree containing only s. For each
tree Ti ∈ T , we are interested in (one of) the node(s) si ∈ Ti closest to s in the
graph G∗. That is, we want an si ∈ Ti such that dG∗(s, si ) = dG∗(s, Ti ). For each
phase, we choose the tree Ti ∈ T closest to s, send the robot to si , and attempt to
explore the incomplete nodes in Ti , by doing a regular DFS on Ti and a bDFX on
each incomplete node. This process in turn creates new trees of incomplete nodes
that we then add to T . For convenience, we call a tree incomplete if it contains any
incomplete nodes and complete otherwise.

Ideally, the robot would explore the entire subtree Ti , visiting and locally explor-
ing all of Ti ’s incomplete nodes. Unfortunately, such an approach would lead to an
inefficient algorithm, particularly, when the robot attempts to reach an incomplete
node of Ti that is deep in the search tree. Our approach works by pruning Ti so that
it has bounded depth, adding the leftover subtrees into T as well. Conversely, we
cannot prune the tree too small, as this would also negatively impact the perfor-
mance. Using a small tree risks having the algorithm spend too much time going
back and forth from the start to the root of the tree relative to exploring the tree
itself. Therefore, we guarantee a lower bound on the size of the pruned trees.

We perform pruning by breaking Ti into smaller subtrees Ti0
, Ti1

, . . . ,Tik , and
replacing these subtrees for Ti in T . The actual exploration is performed on the
pruned tree containing the original closest node si . Pruning a tree at a node w ∈ Ti ,
works by removing the edge between w and the parent of w , creating two new trees,
Ti \Tw and Tw . We determine whether or not to prune the tree at a particular node



Optimal Constrained Graph Exploration 387

FIG. 4. A simple example of pruning a tree with minD = 2 and maxD = 4. (a) The initial tree with
all nodes at depth minD highlighted. (b) The resulting trees formed after pruning.

based on two values minD and maxD with maxD > minD. We prune a node w ∈ Ti
if and only if w is at depth minD and Tw contains nodes at depth (with respect
to Ti ) greater than maxD; see Figure 4. As we prove later, this guarantees that the
maximum depth on the original pruned Ti is maxD and that no pruned subtree has
depth less than maxD− minD. The specific values of minD and maxD are chosen so
that we are able to maintain a minimum-size criterion for every tree in T . That is,
after each phase, for all T ∈ T , |T | ≥ αr/4. For convenience, we assume that αr/4
is an integer.

Figure 5 describes the core elements of the CFX algorithm. The idea is to pick
the incomplete tree Ti closest to the start node s, prune it, and explore it, all the
while maintaining the set of all incomplete trees, with intersecting trees merged.
The process is repeated until there are no remaining incomplete trees.

The explore function moves the robot to si ∈ Ti via the shortest known path
and proceeds to do a depth first traversal of Ti . The function then runs bDFX on all
of the incomplete nodes in Ti as they are encountered. In the end a spanning forest
of all new explored edges is created and added to T . The robot is then moved back
to the starting node.

The total cost of the exploration is equivalent to the cost of getting from s to
si ∈ Ti and back plus the cost to visit all incomplete nodes in Ti plus the cost
needed to perform the various iterations of bDFX. The only mysterious step lies in
the pruning operation, explained intuitively earlier, and whose importance becomes
apparent in the analysis.

3.3. ANALYSIS. Intuitively in our analysis, what we do is group the total se-
quence of steps taken by the robot into three parts: roundtrip steps, tree-traversal
steps, and exploration steps. For each incomplete tree Ti chosen, the roundtrip steps
account for getting from s to si ∈ Ti , and the tree-traversal steps account for the
cost to visit all incomplete nodes in Ti . The exploration steps account for the steps
taken in the calls to bDFX, which essentially is the number of edges marked ex-
plored. We can therefore bound the total number of exploration steps to �(|E |).
The tree-traversal steps, which are part of a depth-first traversal of each tree, can be
bounded to the size of the trees. Next, we guarantee that each tree Ti visited has at
least a certain minimum size that is roughly a factor of the distance from the start
node to the tree. Now, we can also bound the roundtrip steps to a factor of the size
of the trees. Since the trees chosen are more-or-less disjoint,2 we can bound the
size of the trees and consequently the number of roundtrip and tree-traversal steps

2 In fact, each vertex appears in at most two chosen trees.
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FIG. 5. The Closest First Exploration (CFX) algorithm with start node s and rope length (1 + α)r .

to �(|V |). We need to prove the minimum-size criterion for both the incomplete
trees chosen and those incomplete trees that are newly created each iteration.

Our proofs begin with several smaller lemmas and build up to the main theorem
of this section. Recall that �T (si , T ) is the maximum distance along T from si to
all nodes in T and consequently is the radius of T . We begin with a lemma that
bounds the size of the new incomplete trees formed during the explore process in
terms of the rope length, the distance from the start node to the root of the explored
tree, and the radius of the explored tree:

LEMMA 3.1. LetT ′ be the collection of trees formed in any run of explore on a
tree T rooted at node si with rope length l. For any tree T ′ ∈ T ′, if T ′ is incomplete,
then |T ′| > l−dG∗(s, si )−�T (si , T ). Furthermore, if l−dG∗(s, si )−�T (si , T ) > 0,
then the initial tree T becomes complete.
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PROOF. Following the procedure explore, let T ′ be an incomplete tree created
after running bDFX from node v . We can bound the length of rope remaining when
the robot is at node v by the current path taken from s as follows:

l ′ = l − dG∗(s, si ) − dT (si , v) ≥ l − dG∗(s, si ) − �T (si , T ).

Let w ∈ V (T ′) be an incomplete node. After the running of bDFXwith a rope length
l ′, in order for w to remain incomplete, the remaining length at node w must have
been 0; see the code in Figure 2. Therefore, there must exist a node disjoint path of
new explored edges from v to w whose length is l ′. Since the number of nodes in
T ′ is at least one more than the length of this path, we see that |T ′| > l ′.

For the second part of the lemma, assume that after termination T remains
incomplete. Let v be any incomplete node in T . During the depth first traversal
of T (lines 27–34), node v must have been visited. Since l ′ is the length of rope
remaining, we know that l ′ = l − dG∗(s, s1) − dT (si , v) > 0. After calling the
function bDFX with a positive rope length, the initial node v can only be marked
explored. This contradicts the assumption that v was incomplete after termination.
Therefore, T cannot be incomplete.

The following lemma further bounds the size of the trees created by showing
that the distance from the start node to the root of the original tree is no more than
the radius of the graph, r .

LEMMA 3.2. If G∗ 	= G, then the closest incomplete node v to s in G∗ has
dG∗(s, v) ≤ r .

PROOF. Assume not. Let v be the closest incomplete node to s. Then,
dG∗(s, v) > r . Let P = PG(s, v) be the true shortest path from s to v . Notice
that |P| ≤ r by the definition of the radius. Let e = (u, w) be the first edge on
P not in G∗. This must exist otherwise dG∗(s, v) = |P| ≤ r . This implies that
node u is also incomplete in G∗. However, dG∗(s, u) = dG(s, u) ≤ r < dG∗(s, v)
contradicts the fact that v is the closest incomplete node.

The final step in bounding the size of the trees created during theexplore process
requires bounding the radius of the tree T to be explored. However, as mentioned in
the description of our algorithm, to guarantee this we must first prune T . In addition,
we must be careful that the pruned subtrees do not themselves become too small.
The following lemma shows that the pruning process preserves a minimum size
of minD for T , a minimum size of maxD − minD for all pruned subtrees, and a
maximum radius of maxD for T .

LEMMA 3.3. After pruning a tree T rooted at v, the maximum depth of T is less
than or equal to maxD. In other words, �T (v, T ) ≤ maxD. If initially |T | ≥ minD,
then after pruning, |T | ≥ minD. For any subtree Tw created after pruning, |Tw | >
maxD − minD.

PROOF. The proof follows directly from the construction of the prune
algorithm.

In order to argue for the correctness of the CFX algorithm, we also need to
guarantee that all incomplete nodes eventually be visited. The following lemma
shows that in each iteration all current incomplete nodes belong to some current
incomplete tree.
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LEMMA 3.4. After every iteration of the main loop in CFX (lines 3–14), any
incomplete node in G∗ belongs to some tree T ∈ T .

PROOF. Nodes are marked incomplete only in the bDFX function. After each
call, these nodes, by definition, belong to the graph G ′ and the corresponding
spanning forest T ′ which is added to T during explore (line 34). Let us look at
the other possible changes to T . The prune function simply breaks trees up, not
removing any nodes. After each iteration in the main loop of CFX, only complete
trees are removed. The final step in the main loop (line 13) simply merges trees,
also not eliminating any nodes. Since initially the only incomplete node, s, belongs
in T , after each iteration, every incomplete node in G∗ must still lie in some tree
in T .

We now have the tools necessary to prove that the minimum-size criterion is
always maintained.

LEMMA 3.5. After every iteration of the main loop in CFX (lines 3–14), for
every T ∈ T , |T | ≥ αr/4. In addition, after each call of explore in line 11, the
tree T that is explored becomes complete and is removed from T .

PROOF. After the initial iteration of the loop, if the graph is complete, then
there are no incomplete trees and T is empty. If instead the graph is incomplete,
T contains only one tree T (since no pruning is done) and, by Lemma 3.1, |T | ≥
(1 + α)r > αr/4.

During every successive iteration, we choose the tree Ti ∈ T closest to s, with si
being the node in Ti closest to s. Let T be the resulting pruned tree of Ti containing
si . Since minD = αr/4, Lemma 3.3 shows that T still maintains the minimum-size
criterion. Furthermore, Lemma 3.3 also shows that for each pruned subtree Tw ,
|Tw | > maxD − minD = αr/4. Since all explored trees are removed in line 12 and
the merging step (line 13) only increases the size of trees, we only need to show
that, for every incomplete tree T ′ created in explore (line 11), |T ′| ≥ αr/4.

From Lemma 3.2, let v∗ be the closest incomplete node. From Lemma 3.4, we
know that v∗ must belong to some tree in T . Since Ti is the tree in T closest to s
and si is the closest node, we know that si is as close to s as any other node in any
tree of T . Therefore, we see that dG∗(s, si ) ≤ dG∗(s, v∗) ≤ r . Lemma 3.3 states
that after pruning �T (si , T ) ≤ maxD = αr/2. Let v be any node in (the pruned)
T that was incomplete prior to calling explore on T , and let T ′ be the newly
explored tree discovered by calling the bDFX function (line 30) on v . From lines
26–29 of the explore procedure, we know that l ′ = l − dG∗(s, si ) − dT (si , v) ≥
(1 + α)r − r − maxD = αr/2 > 0. If T ′ is incomplete, from Lemma 3.1, we see
that |T ′| > l ′ ≥ αr/2.

Therefore, after each iteration of the main loop of CFX we see that for any tree
T ∈ T , |T | ≥ αr/4. In addition from Lemma 3.1, we know that, after the explore
function on a tree T terminates, T becomes complete and is removed from T
(line 12).

THEOREM 3.6. Any unknown graph G = (V, E) with source node s and (given)
radius r can be explored by a tethered robot using a maximum rope length of (1+α)r
with cost �(|E | + |V |/α), for 0 < α < 1.

PROOF. Since all steps taken by the robot are performed in the explore and
bDFX functions, we can analyze the cost of the algorithm by analyzing these two
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procedures. Let us again examine the pruned tree T given to the explore function.
For each pruned tree explored, we group the number of exploration steps performed
by the robot into three parts, S1(T ), S2(T ), S3(T ). Let S1(T ) = 2dG∗(s, si ) be the
number of steps taken by lines 26 and 35 in the algorithm, which performs a
roundtrip from s to si . Let S2(T ) = 2|T | be the number of steps taken in line 27 to
perform a depth first traversal of T . Let S3(T ) be the number of steps taken by all
calls to bDFX (line 30) for one call of explore, which is equal to twice the number
of unexplored edges traversed, those marked explored.

In the initial phase, T = {s}, so S1(T ) = S2(T ) = 0. Otherwise, from Lemma 3.5,
we know that |T | ≥ αr/4. In addition, as in the proof of Lemma 3.5, we know
that dG∗(s, si ) ≤ r . Therefore, we can bound S1(T ) = 2dG∗(s, si ) ≤ 2r ≤ 8|T |/α.
Consequently, the cost of the explore function on a given pruned tree T is S1(T )+
S2(T ) + S3(T ) ≤ (2 + 8/α)|T | + S3(T ). Let Te be the set of all trees explored in
the entire algorithm. Since bDFX only traverses unexplored edges, we immediately
see that

∑
T ∈Te

S3(T ) = 2|E |.
We now need to bound the size of all trees explored. After any iteration of the

main loop (lines 3–14), all trees in T are node disjoint because of the merge step
taken in line 13. One would then assume that the size of all trees is bounded by
|V |. However, there is a little overlap between successive iterations. Let T be the
current tree explored and v ∈ T be a node in the tree. From Lemma 3.5, we know
that after the explore function call of line 11, T is complete. As a result, if v was
incomplete prior to the explore function call, then it becomes complete after but
may be part of a new tree in T . If v was complete prior to the call, then after the
call it can no longer be present in any other tree in T ; all trees are node disjoint
and v could not be added in subsequent explorations since the trees are formed by
newly explored edges. Consequently, any node v can be part of at most two trees,
once while incomplete and once while complete. We can then bound the size of the
explored trees by

∑
T ∈Te

|T | ≤ 2|V |. Therefore, the total number of exploration
steps S taken by the CFX algorithm is

S = ∑
T ∈Te

(S1(T ) + S2(T ) + S3(T ))

≤ 2|E | + ∑
T ∈Te

(2 + 8/α)|T |
≤ 2|E | + (2 + 8/α)2|V |.

By Lemma 3.4, any incomplete node in G∗ must belong to some tree T ∈ T .
Since the algorithm terminates when T = ∅, we see that upon termination there
can be no more incomplete nodes in G∗. Therefore, G∗ = G and the graph is fully
explored with a cost of �(|E | + |V |/α).

4. Simple Extension for an Unknown Radius

We now assume that the radius is not known but is discovered by the robot. Let us
first look at a simple solution by starting with an initial constant value guess, r ′, of
the radius. We search the graph as much as possible using a rope of length (1+α)r ′
and if this length is insufficient enough to explore the whole graph, we repeat with
a rope double the length. Under this situation, since any radius r ′ > r suffices, we
obtain a cost of O(|E | log r ). Observing that we can use prior information to avoid
re-exploring edges yields a cost of O(|E | + |V | log r ).



392 C. A. DUNCAN ET AL.

We can, however, do much better and surprisingly we only need to modify theCFX
algorithm (Figure 5) slightly, in two places. The changes involve the two function
calls in the main loop. First, we prune the current tree to be explored to a size
relative to its distance to the start node rather than to the (unknown) radius. Second,
we pass the explore function a rope length relative to this distance rather than the
(unknown) radius. Essentially, we make the following two alterations:

6 prune(Ti , si , αdG∗ (s, si )/4, 9αdG∗ (s, si )/16)

11 explore(T, si , (1 + α)dG∗ (s, si ))

As an additional caveat, notice in line 11 if dG∗(s, si ) = 0, the function is given
a rope length of size 0 and is, therefore, unable to explore any edges. So, we
actually replace dG∗(s, si ) with max(dG∗(s, si ), c) for some constant c > 0. For the
remainder of this section, we let algorithm CFX refer to this new modified version.
The essentials behind the analysis of this algorithm are obviously nearly identical
to the original algorithm. Again, the key is to maintain the minimum-size criterion.
However, in this case, we desire a more relaxed constraint that, for any tree T ∈ T ,
|T | ≥ αdG∗(s, T )/4.

The resulting algorithm essentially uses a radius, dG∗(s, si ), that is always guar-
anteed to be no larger than the true radius. Since our modification is so slight, all
previous lemmas still hold for this algorithm except for Lemma 3.5 proving the
minimum-size criterion.

LEMMA 4.1. After every iteration of the main loop in (the modified version of)
CFX (lines 3–14), for every T ∈ T , |T | ≥ max(dG∗(s, T ), c)α/4. In addition, after
each call of explore in line 11, the tree T that is explored becomes complete and
is removed from T .

PROOF. We follow the same lines as the proof of Lemma 3.5. Again, we can
see that if the initial tree constructed is incomplete, then the bound holds.

Let us now examine each successive iteration, where we choose the closest tree
Ti ∈ T , with closest node si . For simplicity, we shall assume that dG∗(s, Ti ) > c.
Let T be the resulting pruned tree of Ti containing si , and let Tw be any other
pruned subtree of Ti . By Lemma 3.3, we know that |T | ≥ minD = αdG∗(s, si )/4 =
αdG∗(s, T )/4 and that |Tw | > maxD − minD = 5αdG∗(s, si )/16. To see that the
criterion still holds for Tw notice that

dG∗(s, Tw ) ≤ dG∗(s, si ) + dG∗(si , w)

= dG∗(s, si )(1 + α/4) (Since dG∗(si , w) = αdG∗(s, si )/4)

< 5dG∗(s, si )/4. (Since α < 1)

Substituting the above equation, we see that |Tw | > αdG∗(s, Tw )/4.
Again, we now only need to show that every incomplete tree created in the

modified call to explore (line 11) also maintains the minimum-size criterion. From
Lemma 3.3, we know that, after pruning T , �T (si , T ) ≤ maxD = 9αdG∗(s, si )/16.
Let v be any node in (the pruned) T that was incomplete prior to calling explore
on T and let T ′ be the newly explored tree discovered by the bDFX function (line
30) on v . Since v ∈ T and v ∈ T ′, we can see that

dG∗(s, T ′) ≤ dG∗(s, si ) + dG∗(si , v) ≤ dG∗(s, si ) + �T (si , T )

≤ dG∗(s, si ) + 9αdG∗(s, si )/16
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< 25dG∗(s, si )/16, or

dG∗(s, si ) > 16dG∗(s, T ′)/25.

If T ′ is incomplete, from Lemma 3.1, we see that

|T ′| > l − dG∗(s, si ) − �T (si , T )

≥ (1 + α)dG∗(s, si ) − dG∗(s, si ) − 9αdG∗(s, si )/16

≥ 7αdG∗(s, si )/16

> 7αdG∗(s, T ′)/25

> αdG∗(s, T ′)/4.

Therefore, after each iteration of the main loop of CFX we see that for any tree
T ∈ T , |T | ≥ αdG∗(s, T )/4. In addition, as with Lemma 3.5, we know that, after
the explore function on a tree T terminates, T becomes complete and is removed
from T (line 12).

THEOREM 4.2. Any unknown graph G = (V, E) with source node s and un-
known radius r can be explored by a tethered robot using a maximum rope length
of (1 + α)r with cost �(|E | + |V |/α), for 0 < α < 1.

PROOF. As with Theorem 3.6, we break the robot traversal steps on a tree T
into three groups, S1(T ), S2(T ), S3(T ), defined as before. Using Lemma 4.1, we
can bound S1(T ) = 2dG∗(s, si ) ≤ 8|T |/α. Recall that S2(T ) = 2|T | and that∑

T ∈Te
S3(T ) = 2|E |, where Te is the set of all trees explored.

We can bound the total exploration steps S taken by the modified CFX algorithm
as

S = ∑
T ∈Te

(S1(T ) + S2(T ) + S3(T ))

≤ 2|E | + (2 + 8/α)
∑

T ∈Te
|T |

≤ 2|E | + (2 + 8/α)2|V | which is �(|E | + |V |/α).

By Lemma 3.4, we know that once the algorithm terminates it has fully explored
the graph. We now only need to show that the length of the rope used is no more
than (1 + α)r . For every iteration on a tree Ti with closest node si , we use a rope of
length (1 + α)dG∗(s, si ). By Lemma 3.2, we know that since G∗ 	= G there exists
an incomplete node v such that dG∗(s, v) ≤ r . From Lemma 3.4, v belongs to some
tree in T . Recall that si is chosen to be the closest node among all nodes in all trees
in T . Therefore, (1 + α)dG∗(s, si ) ≤ (1 + α)dG∗(s, v) ≤ (1 + α)r .

Using the simple reduction as described in Lemma 2.1, we can also achieve
similar bounds for the piecemeal search when the radius is unknown.

COROLLARY 4.3. Any unknown graph G = (V, E) with source node s and
unknown radius r can be explored by a fuel-constrained robot using a tank of size
at most 2(1 + β)r with cost �(|E |/β), for 0 < β < 1.

4.1. TREASURE HUNTING. In the treasure hunting problem or shortest path
problem, recall that we are searching for a node t at unknown distance from s in
an infinite graph G∞. We define the graph Gk ⊂ G∞ to be the subgraph induced
by all nodes v such that dG∞(s, v) ≤ k. If we let r = dG∞(s, t), in general graphs
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FIG. 6. (a) A simple example illustrating the need to extend the minimum rope length needed. Here
the rope length needed is 101 and not just 1 or 2. (b) A slightly more complex example where the
upper and lower chains have �max nodes. Here the rope length needed d(s, a) + �small = �max + �small
and not simply d(s, a) = �max or d(s, a) + �max = 2�max.

the treasure hunting problem must explore all nodes and edges in Gr . To see this,
we note that the adversary only needs to make t be the last node in Gr visited by
any exploration. If we modify algorithm CFX to stop once the node t is discovered,
we know that the robot can never go beyond distance (1 + α)dG∗(s, t) ≤ (1 + α)r
from s. This observation yields the following corollary.

COROLLARY 4.4. For any unknown infinite graph G∞ with source node s, we
can find a destination node t by exploring the subgraph G(1+α)d(s,t) = (V, E) with
a cost of �(|E | + |V |/α), for 0 < α < 1.

5. Extension to weighted graphs

Let us now consider a variation of the problem with graphs containing weighted
edges, or edges with different lengths. This variation requires a slight modification
to our definitions.

5.1. SOME MODIFIED DEFINITIONS. For our graph G = (V, E), we associate a
length �(e) = �(u, v) ≥ 0 for every e = (u, v) ∈ E . The cost for a robot to traverse
an edge is �(e). We also assume that a robot can detect the length of an edge, once
the edge is first encountered but before actually traversing it.

We must now redefine our distance and size calculations in terms of these
weighted edge lengths. For a set of edges E , the size of the set is the sum of edge
lengths, |E | = ∑

e∈E �(e). For any (sub)graph H = (V (H ), E(H )), the size of the
graph is |H | = |E(H )|. For the remainder of this section, when we refer to size and
distance terms we are referring to their weighted values. For example, the weighted
distance between two nodes is dG(v, w) = |PG(v, w)| = ∑

e∈PG (v,w) �(e). To help
in our analysis later, let us define the extended edge set for a subgraph H ⊆ G as
E E(H ) = {e = (u, v) ∈ E(G)|u ∈ V (H )}. That is, the extended edge set of H
is the set of all edges in G that have at least one endpoint in V (H ). Similarly, we
define the extended size of H as ‖H‖ = ∑

e∈E E(H ) �(e).
In the previous unweighted solution, it was sufficient to have a rope of length

r + 1 to visit the entire graph. We note that every edge as well as every vertex
must be explored in a graph of unknown radius, otherwise it would be impossible
to determine if two unexplored edges were in fact the same edge or led to a new
unexplored node. As is illustrated in Figure 6(a), a length of r + 1 would be
insufficient to explore the graph. It would certainly be sufficient to include an
additional rope length equal to the length of the longest edge �max. However, as
Figure 6(b) illustrates, this would also not be as tight as we could use. Instead,
we prefer to use a length proportional to the smallest rope required to explore the
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graph completely, including all edges, if the graph were known in advance. This is
equal to the distance to the deepest edge. That is, let the distance from a node w to
an edge e = (u, v) be d(w, e) = min(d(w, u), d(w, v)) + �(e), and let the deepest
edge be the edge e� ∈ E such that dG(s, e�) = maxe∈E(G) dG(s, e). Therefore, the
minimum rope length needed to explore a graph is r� = dG(s, e�). Observe that
r� ≥ r . We prove that our algorithm can explore the graph using a rope of length
r� +αr . Of course, for the fuel-constrained, piecemeal, search the same reasoning
applies regarding the size of the fuel tank needed, and again the two problems can
be shown to be equivalent within constant factors. For completeness, we give a
proof below.

LEMMA 5.1. Assume we are given an unknown, weighted graph G. For any
β > 2, the fuel-constrained exploration on G with a tank of size β� can be reduced
to the tethered exploration problem with a rope of length �; the cost increases by a
factor of β

β−2
. Conversely, for any α > 1, the tethered exploration on G with a rope

of length αt/2 can be reduced to the fuel-constrained exploration problem with a
tank of size t , with a 2α

α−1
factor increase in cost.

PROOF. We first describe the reduction from the fuel-constrained search to
a tethered search. As with Lemma 2.1, let A be an algorithm that performs a
tethered robot exploration with a rope of length �, with cost T . We shall develop an
algorithm B for fuel-constrained exploration with a tank of size β�, with β > 2 that
emulates A. Unlike the previous lemma, a fueled robot cannot arbitrarily interrupt
the emulation for refueling because the robot may be in the midst of traversing an
edge, although technically we could define the problem to allow this. However, let
us initially allow this interruptibility. Therefore, let algorithm B emulate A with the
addition that, every (β − 2)� steps, it sends the robot to s for refueling and back to
the current edge portion. For example, if the edge has length 3 and the robot is able
to explore 1 unit of the edge before refueling, the robot would refuel and return to
continue with the remaining 2 units of the edge. Since the robot is always within
distance � to s, the amount of fuel needed to go to s and back is at most 2� and the
total fuel used between refuelings is at most 2� + (β − 2)� = β�. Since there is a
refueling operation with cost at most 2� after at least (β − 2)� emulated steps of
A, algorithm B has cost at most T + T (2�)/(β − 2)� = βT/(β − 2). For the case
when the robot cannot temporarily interrupt an edge traversal, we just terminate
each phase before starting to explore an edge partially. This only shortens the cost
of the algorithm.

The converse reduction also follows the same lines as the proof in Lemma 2.1.
Again, let B be an algorithm that performs a fuel-constrained exploration with a
tank of size t with cost T , and let A emulate B with a tethered robot having a rope
of length αt/2. When A uses αt/2 units of rope, we unwind and return. Since the
fuel-constrained robot in B must never go beyond a known distance t/2 from the
start node, the unwinding step can take at most αt/2 + t/2 steps and is executed at
most every αt/2 − t/2 steps. Therefore, the total cost of the emulation is at most
T + T (α + 1)/(α − 1) = T (2α)/(α − 1).

5.2. MODIFIED ALGORITHM. In this section, we assume that the radius is un-
known but we guarantee that the rope length used is never larger than r� +αr , with
r� being the distance to the deepest edge.
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FIG. 7. The �-CFX, �-bDFX, and �-prune algorithms. Note that �-explore is nearly identical to
the original explore and so is not shown.

Our approach is to modify the various algorithms to properly handle edge lengths
in the following manner; see Figure 7:

(1) The �-bDFX algorithm incorporates the following natural extensions to the
bDFX algorithm:

(a) On traversing an edge e, the length of the remaining rope decreases by �(e),
instead of 1.
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FIG. 8. A simple example of pruning a weighted tree with the indicated minD and maxD values.
Here we illustrate the weight of an edge by its vertical displacement. (a) The initial tree with all edges
crossing distanceminDdashed. The two nodes involved per edge are highlighted. (b) The resulting trees
formed after pruning. The edges pruned are left “dangling” from each node. For analysis purposes,
these edge portions contribute to the (extended) size of their respective trees.

(b) The robot can only traverse an edge e if the remaining rope length l is not
smaller than the edge length �(e). This implies that we may backtrack even
if there is rope remaining but no edge short enough to explore.

(2) We modify the �-prune algorithm to prune only at nodes whose parent edge
overlaps the required depth minD; see Figure 8.

(3) The �-CFX algorithm is changed to make the proper modified algorithm calls.
In addition, it sends slightly different values for minD and maxD to the �-prune
method and a slightly different rope length to �-explore. This length is the
original length plus a value �′, which is the length of the longest unexplored
(extended) edge in EE(T ). As we show later, this length is still within the stated
rope length bounds.

(4) The �-explore algorithm is simply a modification of explore that calls
�-bDFX and so is not shown.

5.3. MODIFIED ANALYSIS. The analysis of the weighted case closely mirrors
the unweighted case presented in Sections 3 and 4. However, as mentioned in
Section 5.1, much of our analysis must now focus on the sum of edge lengths
rather than the number of vertices. In addition, to ease our analysis, we consider the
extended size of a tree when accounting for traversals on these trees. Our algorithm
requires modifications to Lemmas 3.1, 3.3, and 4.1 and to Theorem 4.2. However,
we note that Lemmas 3.2 and 3.4 and their proofs still hold.

LEMMA 5.2. Let T ′ be the collection of trees formed in any run of �-explore
on a tree T rooted at node si with rope length l. For any tree T ′ ∈ T ′, if T ′ is
incomplete, then ‖T ′‖ > l −dG∗(s, si )−�T (si , T ). Furthermore, if l −dG∗(s, si )−
�T (si , T ) ≥ �′, then the initial tree T becomes complete, with �′ being the length
of the longest unexplored edge in EE(T ).

PROOF. As in the proof of Lemma 3.1, we consider an incomplete tree T ′
created after running �-bDFX from some node v during a run of �-explore. As
before, the length of the rope remaining when �-explore starts from v is l ′ =
l − dG∗(s, si ) − dT (si , v) ≥ l − dG∗(s, si ) − �T (si , T ). Let w ∈ V (T ′) be an
incomplete node. Let l ′′ be the length of rope remaining when �-bDFX started at
w . Since w is not explored there must have been an unexplored edge e incident on
w such that �(e) > l ′′. This implies that there must exist a node disjoint path of
new explored edges from v to w whose edge length is more than l ′ − �(e). Since
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the extended size, ‖T ′‖, includes both these edges and the extended edge e, we see
that ‖T ′‖ > l ′.

For the second part of the lemma, assume that after termination T remains
incomplete. Let v be any node in T that remains incomplete after termination of
�-explore. During the depth first traversal of T , node v must have been visited. As
in the first part and from the condition on the second part, we know that the length of
rope remaining satisfies l ′ ≥ l − dG∗(s, si ) −�T (si , T ) ≥ �′. Since v is incomplete
after termination of �-explore, it must also be incomplete after termination of the
�-bDFX function. This implies that there is an unexplored edge e incident to v such
that �(e) > l ′ ≥ �′. However, e is an unexplored edge in EE(T ). This contradicts
the definition of �′, that �(e) ≤ �′, and therefore T must be complete.

LEMMA 5.3. After pruning a tree T rooted at v, the maximum depth of T is less
than or equal to maxD. In other words, �T (v, T ) ≤ maxD. If initially ‖T ‖ ≥ minD,
then after pruning, ‖T ‖ ≥ minD. For any pruned subtree Tw created after pruning,
‖Tw‖ > max{maxD, dT (v, w)} − minD.

PROOF. The proof for the first part follows directly from the construction of
the �-prune algorithm. For the second part, suppose the subtree Tw rooted at
node w is pruned off. Then, dT (v, w) ≥ minD. Let u be the parent of w . Since u
remains in T , from our definition of the extended size, we know that after pruning
‖T ‖ ≥ dT (v, u) + �(u, w) = dT (v, w) ≥ minD.

For the final part, let Tw be any pruned subtree of T and let u be the parent
of w . Recall that from the selection condition in �-prune, dT (v, u) < minD and
dT (v, w) ≥ minD. We look at two possible cases.

Case 1. Let dT (v, w) ≤ maxD. From the condition in �-prune we know that
�T (v, Tw ) > maxD. Since the edge (u, w) /∈ E(Tw ) and w ∈ Tw , we know that

‖Tw‖ ≥ �(u, w) + �Tw (w, Tw )

= �T (u, Tw )

= �T (v, Tw ) − dT (v, u)

> maxD − minD.

Case 2. Let dT (v, w) > maxD. Since dT (v, u) < minD and (u, w) ∈ EE(Tw ),
we know that ‖Tw‖ ≥ �(u, w) = dT (v, w) − dT (v, u) > dT (v, w) − minD.

Therefore, we know that ‖Tw‖ > max{maxD, dT (v, w)} − minD.

As with the previous two CFX algorithms, the key to the analysis is to maintain
a minimum-size criterion for each tree that is explored. In this case, we desire that,
for any tree T ∈ T , ‖T ‖ ≥ αdG∗(s, T )/5. That is, we consider the extended size
of the tree and use a factor of one-fifth instead of the previous one-quarter.

LEMMA 5.4. After every iteration of the main loop in �-CFX (lines 3–16), for
every T ∈ T , ‖T ‖ ≥ αdG∗(s, T )/5. In addition, after each call of �-explore in
line 13, the tree T that is explored becomes complete and is removed from T .

PROOF. Clearly, this holds for the initial tree created as dG∗(s, T ) = 0. For
each successive iteration, we must again examine the operations on the tree Ti ∈ T
closest to s, with closester node si . Let T be the resulting pruned tree of Ti and let
Tw be any other pruned subtree of Ti . By Lemma 5.3, we know that ‖T ‖ ≥ minD =



Optimal Constrained Graph Exploration 399

αdG∗(s, si )/5 = αdG∗(s, T )/5 and that ‖Tw‖ > max{dT (si , w), maxD} − minD.
To see that the criterion still holds for Tw , we look at the two cases. Recall that
minD = αdG∗(s, si )/5 and maxD = 3αdG∗(s, si )/5.

Case 1. If dT (si , w) ≤ maxD, then ‖Tw‖ > maxD − minD = 2αdG∗(s, si )/5.

dG∗(s, Tw ) ≤ dG∗(s, si ) + dT (si , w)

≤ dG∗(s, si ) + maxD

= dG∗(s, si )(1 + 3α/5)

< 8dG∗(s, si )/5. (Since α < 1)

Substituting the above equation yields

‖Tw‖ > 2αdG∗(s, si )/5 > 2αdG∗(s, Tw )/8 > αdG∗(s, Tw )/5.

Case 2. If dT (si , w) > maxD = 3αdG∗(s, si )/5, then

‖Tw‖ > dT (si , w) − minD

= dT (si , w) − αdG∗(s, si )/5

= dT (si , w)/5 + 4dT (si , w)/5 − αdG∗(s, si )/5

> αdT (si , w)/5 + 4dT (si , w)/5 − αdG∗(s, si )/5 (Since α < 1)

> αdT (si , w)/5 + 12αdG∗(s, si )/25 − αdG∗(s, si )/5

> αdT (si , w)/5 + αdG∗(s, si )/5

≥ αdG∗(s, Tw )/5. (Since dG∗(s, Tw ) ≤ dG∗(s, si ) + dT (si , w))

Again, we now only need to show that every incomplete tree created in
�-explore (line 13) also maintains the minimum-size criterion. From Lemma 5.3,
we know that, after pruning T , �T (si , T ) ≤ maxD = 3αdG∗(s, si )/5. Let v be any
node in (the pruned) T that was incomplete prior to calling �-explore on T and
let T ′ be the newly explored tree discovered by the �-bDFX function on v . Since
v ∈ T and v ∈ T ′, we can see that

dG∗(s, T ′) ≤ dG∗(s, si ) + dG∗(si , v) ≤ dG∗(s, si ) + �T (si , T )

≤ dG∗(s, si ) + 3αdG∗(s, si )/5

< 8dG∗(s, si )/5, or

dG∗(s, si ) > 5dG∗(s, T ′)/8.

If T ′ is incomplete, from Lemma 5.2, we see that

‖T ′‖ ≥ l − dG∗(s, si ) − �T (si , T )

> (1 + α)dG∗(s, si ) − dG∗(s, si ) − 3αdG∗(s, si )/5

= 2αdG∗(s, si )/5

> 2αdG∗(s, T ′)/8

> αdG∗(s, T ′)/5.

Therefore, after each iteration of the main loop of �-CFX we see that for any
tree T ∈ T , ‖T ‖ ≥ αdG∗(s, T )/5. In addition, as with Lemma 3.5, we know that,
after the �-explore function on a tree T terminates, T becomes complete and is
removed from T (line 14).
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THEOREM 5.5. Any unknown weighted graph G = (V, E) with source node s,
unknown radius r , and unknown deepest edge distance r� can be explored by a
tethered robot using a maximum rope length of r� + αr with cost �(|E |/α), for
0 < α < 1.

PROOF. As with Theorem 3.6, we break the robot traversal steps on a tree T
into three groups, S1(T ), S2(T ), S3(T ), defined as before. Using Lemma 5.4, we
can bound S1(T ) = 2dG∗(s, si ) ≤ 10‖T ‖/α. Recall that S2(T ) = 2|T | ≤ 2‖T ‖
and that

∑
T ∈Te

S3(T ) = 2|E(G)|, where Te is the set of all trees explored.
We now need to bound the extended size of all trees explored. After any iteration

of the algorithm, all trees in T are node disjoint. However, as discussed in the proof
of Theorem 3.6, the number of nodes in all trees is not bounded simply by |V |. If
we let T be the current tree explored, then from Lemma 5.4, we know that after
the �-explore function call of line 13, T is complete. As with Theorem 3.6, this
implies that any node can be in at most two trees, once as an incomplete node and
once as a complete node. Unlike the previous theorems, though, we are concerned
with the extended size of the trees. Recall from the definition that every edge is
included in the extended size only if one of its corresponding nodes is in the tree.
This immediately implies that any edge can be included in the extended edge set
of at most four trees, two per node. Hence,

∑
T ∈Te

‖T ‖ ≤ 4|E(G)|.
We can bound the total exploration steps S taken by the �-CFX algorithm as

S = ∑
T ∈Te

(S1(T ) + S2(T ) + S3(T ))

≤ 2|E | + (2 + 10/α)
∑

T ∈Te
‖T ‖

≤ 2|E | + (2 + 10/α)4|E | which is �(|E |/α).

We note that our constant factors are intentionally overestimated to simplify the
analysis. By Lemma 3.4, we know that once the algorithm terminates it has fully
explored the graph. We now only need to show that the length of the rope used is
no more than r� + αr . For every iteration on a tree Ti with closest node si , we
use a rope of length (1 + α)dG∗(s, si ) + �′. Let e = (u, v) ∈ EE(T ) be the longest
unexplored extended edge in T ; that is, �′ = �(e). From the definition of the distance
to an edge and without loss of generality, let dG(s, e) = dG(s, v) + �(e). Notice
that v may not necessarily be in T . Let v ′ be the closest incomplete node to s on
PG(s, v), which may be v itself. Such a node must exist since v is either incomplete
or unexplored. Since there are no other incomplete nodes from s to v ′ we know
that PG(s, v ′) = PG∗(s, v ′). From Lemma 3.4 and the fact that si is the closest node
among all nodes in T , we know that dG(s, v ′) = dG∗(s, v ′) ≥ dG∗(s, si ). Using the
definition of the deepest edge, e�, we see that

r� = dG(s, e�)

≥ dG(s, e)

= dG(s, v) + �′

≥ dG(s, v ′) + �′

≥ dG∗(s, si ) + �′

As in the proof of Theorem 4.2, we also know that dG∗(s, si ) ≤ r . Therefore, we
see that (1 + α)dG∗(s, si ) + �′ ≤ r� + αr .



Optimal Constrained Graph Exploration 401

From Lemma 5.1 and the fact that r� > r , we achieve similar bounds for the
piecemeal search.

COROLLARY 5.6. Any unknown weighted graph G = (V, E) with source node
s, unknown radius r , and unknown deepest edge distance r� can be explored by a
fuel-constrained robot using a tank of size at most 2(1 + β)r� with cost �(|E |/β),
for 0 < β < 1.

6. Conclusion and Open Problems

We have presented a linear-cost algorithm for the exploration of general unknown,
weighted graphs with unknown radius and thus answered the open problem of
Awerbuch et al. [1999a]. We conclude with some interesting open questions.

— It is critical for our algorithm to use a rope of length (1 +α)r . It is interesting to
see what is the minimum rope length that still allows linear exploration cost. We
conjecture that r + o(r ) is not sufficient. On the other hand, it is easy to see that
piecemeal search with a fuel capacity of 2r + o(r ) is not possible in linear steps
on the “popsicle” graph consisting of a path of length n/2 connected to a clique
on n/2 nodes. Let the start node be the first node on the path, so r = n/2. If the

fuel limit is n + f (n), it necessarily takes at least �( n3

f (n)
) exploration steps.

— Another related question is whether a linear-cost algorithm exists for the treasure
hunting problem of Awerbuch et al. [1999a]. In other words, does Corollary 4.4
hold with α = 0 and only �(|E | + |V |) steps?

— In the unweighted case, the exploration cost of our algorithm is 2|E | + O(|V |).
In light of Panaite and Pelc [1999], it is worth exploring whether an |E |+O(|V |)
algorithm exists for the fuel-constrained or the distance-constrained search.

— In the weighted case, our algorithm’s dependency on α became �(|E |/α). It is an
interesting challenge to reduce this dependency and develop a �(|E |+ f (G, α))
algorithm where f is some function that depends on α and specific properties
of the graph. For example, it may be possible to state the performance in terms
of the size of a (minimum) spanning tree in G.
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