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2 LaBRI - Université Bordeaux 1 - CNRS
kosowski@labri.fr

3 Institute of Computer Science, University of Gdańsk
pz@inf.univ.gda.pl

Abstract. We study the problem of exploring a simple grid polygon
using a mobile robot. The robot starts from a location which is adjacent
to the boundary of the polygon, and after exploring all the squares, has to
return to its starting location. The robot is equipped with memory, but
has no prior knowledge of the explored terrain. The view of the terrain
is restricted to the four squares directly adjacent to the robot’s current
location. The performance of the exploration strategy is measured in
terms of the competitive ratio, with respect to the length of the optimal
path for an exploration with complete knowledge of the terrain.
We propose a new exploration strategy which achieves a competitive
ratio of 5/4, whereas the previously best approach [Icking, Kamphans,
Klein, and Langetepe; Proc. COCOON’05 ] has a competitive ratio of
4/3. The analysis for our algorithm is tight. Moreover, we show that no
exploration strategy is ever better than 20/17-competitive, thus improv-
ing the previous lower bound of 7/6.

Key words: Exploration problem, Path planning, Grid polygon, Com-
petitive ratio.

1 Introduction

In this paper we investigate one of the basic path planning problems for a mobile
robot, namely that of exploring the area of an unknown polygon. This type of
geometric problem has received a lot of attention, both in a continuous and a
discrete setting. In the continuous variant, sometimes referred to as the milling
problem [2] or the mobile robot covering problem [5], the robot has non-zero
spacial dimensions and moves along a continuous trajectory, with the goal of
covering each point of the explored environment at least once. Herein, we focus
on the discrete variant of the problem, defined for polygons composed of unit
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cells; this can in fact also be regarded as a special case of a graph exploration
problem.
The explored environment is assumed to be a simple two-dimensional or-

thogonal polygon with integer coordinates. The environment is divided into unit
squares (called cells), with coordinates of corners belonging to the integer grid.
The robot is always assumed to occupy the whole of a single cell. The robot’s
motion is restricted to one of four directions: East, West, North or South. Time
is measured in discrete steps, and in one step, the robot can only move from one
cell to a cell which is directly adjacent along a side (at a distance of one). The
task of the robot is to perform an exploration of all the cells of the polygon and
return to the cell of its initial location. The robot can only proceed through cells
which are located within the explored polygon, and the starting cell is assumed
to be adjacent to the boundary of the polygon.
In such a scenario, one can define different limitations to the robot’s capa-

bilities: its knowledge of the polygon, memory, ability to leave markers in the
terrain. In this paper we assume that the robot is equipped with sufficient mem-
ory and processing power, but has no prior knowledge of the explored polygon.
Upon entering a cell and before deciding on the next move, the robot has only a
sense of the direction of its current heading (a compass), and a local view of the
surroundings, indicating which of the four cells directly adjacent to its current
location belong to the polygon. Thus, the next move in the exploration has to
be computed based on the fragment of the map of the terrain which the robot
has already discovered. The behaviour of the robot in some way resembles an
on-line algorithm. Our goal is to design the best possible strategy for the robot,
and to compare it to the optimal strategy for the off-line version of the problem,
i.e., the scenario in which the robot is initially given a map of the entire terrain,
together with a marker representing its initial location.

Related work. The off-line version of the problem can be rephrased in terms of
the unweighted Travelling Salesman Problem (TSP) on a special class of graphs.
The input graph is then some (planar) subgraph of the two-dimensional grid,
with nodes defined as cells of the polygon, and edges connecting each cell with the
four cells neighbouring along a side. This problem was shown to be NP-hard for
polygons with holes by Itai, Papadimitriou and Szwarcfiter [12]; the hardness of
the problem for polygons without holes remains an open problem. On the other
hand, since the considered TSP instance is planar and has a natural metric, the
problem admits a Polynomial-Time Approximation Scheme, using the techniques
of Arora [3], Grigni, Koutsoupias, and Papadimitriou [8], or Mitchell [14]. These
results hold regardless of whether the polygon is allowed to have holes or not.
The case without holes also admits some simple and efficient approximation
algorithms, for example the linear-time 6/5-approximation of Arkin, Fekete, and
Mitchell [2].
For the case of a robot having only a local view of the adjacent cells, a simple

exploration is achieved by performing a DFS exploration of the cells. In general,
such a route is a 2-competitive solution to the TSP problem, since it traverses
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Type of environment Upper bound Ref. Lower bound Ref.

Polygon with holes 2C − 2 DFS 2SOPT − c [5, 10]

B + C SpiralSTC [5]

C + 1

2
E + W + 3H − 2 CellExplore [10]

Polygon without holes 4

3
SOPT SmartDFS [11] 7

6
SOPT − c [11]

5

4
SOPT Thm. 2 20

17
SOPT − c Thm. 3

Table 1. Bounds on the cover length of an unknown polygon for a robot with local
view (SOPT – length of the optimal cover path with full knowledge of the polygon, C
– polygon area, B – number of boundary cells, E – perimeter of the polygon, W –
sinuosity of the polygon [13], H – number of holes, c – an additive constant).

twice each of the edges of the spanning tree of the cell graph. In fact, for polygons
with holes such an approach is essentially the best possible: it is known [5,10] that
there does not exist a strategy which achieves a competitive ratio better than 2.
However, some strategies for covering polygons with holes were constructed by
Gabriel and Rimon [5], and Icking et al. [10]. In these approaches, the length of
the exploration is bounded in terms of the number of holes, area, perimeter, and
certain other parameters of the polygon (see Table 1); hence, in some cases the
performance of these strategies is better than that of DFS. For the case when
the covered polygon has no holes, Icking et al. [11] put forward a modification of
the DFS approach which they called SmartDFS. SmartDFS was shown in [11]
to be a 4/3-competitive algorithm, and it was also proved that there does not
exist an approach to the covering problem which is better than 7/6-competitive.
Recently, Herrmann, Kamphans, and Langetepe [9] have investigated the

related problem of exploration with local view of polygons on the triangular
and hexagonal grids, i.e., in settings where a cell is a triangle or a hexagon.
They showed that there does not exist an algorithm which is better than 7/6-
competitive for a triangular polygon, and better than 13/11-competitive for a
hexagonal polygon. They also proposed a modified variant of SmartDFS for
hexagonal and triangular polygons. The corresponding off-line versions of the
problem, for a robot with full knowledge of the map in a triangular or hexagonal
grid polygon, are known to be NP-hard [1, 7].

Contribution and outline of the paper. The paper is organised as follows.
In Section 2 we propose a new strategy with local view for exploring orthogonal
grid polygons without holes, and prove that it achieves a competitive ratio of
5/4, thus improving the ratio of 4/3 achieved by the SmartDFS approach. We
show that the analysis of the competitive ratio of our algorithm is tight. In
Section 3 we provide a new lower bound of 20/17 on the competitive ratio of any
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robot tour

visited cells
discovered cells

boundary cells
interior cells

(a) (b)

×

Fig. 1. (a) Discovered and visited cells. (b) Interior and boundary cells. The unique
split cell is marked with a cross (×).

exploration algorithm with local view for the studied class of polygons. Some
concluding remarks are made in Section 4.

Notation. We divide the polygon P and the surrounding plane into unit squares
(cells). Each cell of the polygon is either not adjacent to the boundary of the
polygon, or has at least one corner lying on the boundary. This divides the set
of cells of the polygon into two disjoint sets: the skeleton (interior cells) and the
boundary cells (Fig. 1(b)). We call a cell discovered if at least one of its neighbors
has already been visited by the robot (Fig. 1(a)).
We will say that a cell x ⊂ P is a split cell of a simple polygon P , if region

P\x is not a polygon (or polygon with holes), i.e., the line of the outline of
P\x is not self-avoiding; see Fig. 1(b) for an example. Note that P\x is a union
of simple polygons; we will call he minimal number of disjoint simple polygons
which cover polygon P\x the multiplicity of the split cell x. We define the split
number of the polygon as T = T2 + 2T3 + 3T4, where Ti is the number of split
cells with multiplicity i, for i = 2, 3, 4.
The total number of cells of the polygon P is denoted by C(P ), or simply C

if this does not lead to misunderstanding. We denote the length of the optimal
length of a solution which can be achieved by a robot with full knowledge (a
map) by SOPT, and the length of the robot’s path computed by algorithm A
by SA. We say that exploration algorithm A is α-competitive if there exists a
constant c such that for any polygon P we have SA(P ) ≤ αSOPT(P ) + c.
Throughout the paper we will assume that the robot is located in a corner

cell of the polygon, and that the initial heading of the robot is such that the
cell behind and it and the cell directly to the left are outside the polygon, and
the cell in front of the robot is within the polygon. It is straightforward to show
that for the considered algorithms the starting cell can be moved to an arbitrary
cell adjacent to the boundary, without affecting the competitive ratio (only the
additive constant c). Indeed, if the starting cell s is a boundary cell, then P \ s
is a union of 1, 2, 3, or 4 simple polygons. We can explore each of these polygons
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separately, starting and ending at a corner cell adjacent to s, and finally return
to s at a constant additive cost.

2 A 5/4-Competitive Algorithm

Our approach to the problem relies on an extensive modification of the Depth
First Search (DFS) strategy. A slightly extended implementation of DFS could
work as follows: the robot maintains a stack of unvisited cells. At every step, it
adds to unvisited the cells which are adjacent to the robot’s location. Visited cells
are purged from the unvisited stack, and the robot then proceeds along the short-
est path to the top-most cell of the stack, if the stack is non-empty. If the stack is
empty, this means that the whole polygon has been explored, and the robot re-
turns to its starting location. This is also the general idea behind the SmartDFS
approach put forward in [11]. In fact, such an exploration strategy is shown to
achieve a competitive ratio of 4/3, as long as the adjacent cells are pushed onto
the unvisited stack in the following order: first the cell to the right, then the cell
in front of, and finally the cell to the left of the robot (with respect to its current
heading). Intuitively, the robot will thus traverse the unvisited boundary cells of
the polygon in the clockwise direction, as long as this is possible, and when some
sub-polygon consisting of unvisited cells has been completely surrounded by the
robot’s path, the robot first embarks upon a sub-exploration of this polygon. A
worst-case example for SmartDFS is an exploration of the rectangular polygon
of dimensions 3×n [11] in which this strategy will, in particular, visit twice n−3
of the cells belonging to the skeleton of the polygon.
In order to avoid such a problem and to achieve a competitive ratio of 5/4,

in our strategy, we modify the DFS approach by adding a special rule set for
handling situations in which the polygon intuitively “narrows down to a width
of 3”. The proposed strategy will behave differently from SmartDFS when one of
the cells adjacent to the robot’s location is identified as either a so-called dead-
end or a bottle-neck, and such cells will be visited first. Both these notions are
formally defined below (see Fig. 2 for a simple example displaying the general
idea of the modifications).

Definition 1. A cell c is called a dead-end at a given step of exploration if all
of the following conditions are jointly fulfilled:

– Cell c has not yet been visited by the robot and it is adjacent along a side to
the cell where the robot is currently located.
– Exactly 3 of the cells adjacent to c along a side have already been visited by
the robot.
– There does not exist any cell c′ outside of polygon P , such that c′ has already
been discovered by the robot and c′ is adjacent to c along a side or across a
corner.

Definition 2. A cell c is called a bottle-neck at a given step of exploration if
all of the following conditions are jointly fulfilled:
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(a)

(b)

SmartDFS Algorithm A

Algorithm ASmartDFS

Fig. 2. Differences between our approach (Algorithm A) and SmartDFS [11] when
handling: (a) dead-ends, (b) bottle-necks.

– Cell c has not yet been visited by the robot and it is adjacent along a side to
the cell where the robot is currently located.
– The union of the set of already explored cells and cell c surrounds all the
sides of the outline of some polygon P ′ ⊂ P , such that P ′ consists of unvisited
cells, only, and P ′ contains the cell adjacent to c along the right side of c (for
directions as understood when entering c from the robot’s current location).
– There does not exist any cell c′ outside of polygon P ′, such that c′ has already
been discovered by the robot and c′ is adjacent to c along a side.
– The cell located directly in front of the robot’s location (with respect to its
current heading) is located within the polygon.

Observe that the definitions of a dead-end and a bottle-neck are such that
the robot can always verify whether a given cell is a dead-end or a bottle-neck,
based only on its current local view and its history of exploration.

2.1 The Algorithm

Our approach is defined precisely as follows. Throughout execution, the robot
maintains a stack of cells called unvisited (as in DFS) and an additional stack
called priority, used to implement the modified rules applied when encountering
a dead-end or a bottle-neck. Both these stacks are initially empty. At each step
of exploration, the precise procedure applied by the robot is given in the form
of Algorithm A. In the pseudocode, the rules marked with the symbol (*) de-
note those, which are an extension with respect to the standard DFS approach.
The robot terminates exploration when it re-enters its initial location, and the
unvisited stack is empty.

2.2 Analysis of the Competitive Ratio

Observe that for any polygon, the optimal length of the off-line cover path fulfills
the bound SOPT ≥ C + T . This is because in any exploration, each of the C
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Algorithm A Procedure for determining the next move of the robot.

At each time step do:

1. Update the stacks of unvisited and priority cells:
– Push on top of the unvisited stack the 3 adjacent cells which are directly to
the right of the robot, in front of the robot, and to the left of the robot (with
respect to its current heading), in precisely that order, i.e., with the left cell
coming topmost.

– Search through the unvisited stack and purge from it all those cells, which have
already been visited by the robot.

– (*) Search through the priority stack and purge from it all those cells, which
have already been visited by the robot.

2. Set the destination of the robot:
– (*) If the priority stack is non-empty, then set: destination := top of the priority
stack.

– If the priority stack is empty, then:
• If the unvisited stack is non-empty, then set: destination := top of the
unvisited stack.

• Otherwise, set: destination := initial location of the robot
3. (*) If the current location of the robot is adjacent to a dead-end or a bottle-neck,
then alter the destination of the robot:
– Push the current destination on top of the stack of priority cells.
– Set destination := location of the adjacent dead-end/bottle-neck. If there is
more than one dead-end or bottle-neck directly adjacent to the robot, we give
preference to the one to the right of the robot, then the one in front of the
robot, finally the one to the left of the robot.

4. Perform a move of the robot:
– If the current destination is not a bottle-neck, move the robot to an adjacent
cell which is closer to the destination than the robot’s current location (with
respect to the shortest path metric within the set of cells already discovered by
the robot). If more than one such cell exists, break ties by arbitrarily choosing
a cell which has not yet been visited.

– (*) Otherwise, move the robot to its destination in the minimum number of
steps, so as to cover on the way the entire sub-polygon P ′ (the unvisited
sub-polygon surrounded by previously visited cells and the bottle-neck cell
destination). The optimal route can always be determined, since the boundary
of the covered sub-polygon is known.

cells of the polygon has to be visited at least once, and each of the split cells
has to be visited more times, depending on the multiplicity of the split cell.
Hence, we confine ourselves to bounding the length of path SA with respect to
(C + T ). More precisely, to prove that the approach given by Algorithm A has
a competitive ratio of 5/4, we will establish the following claim.

Theorem 1. For any polygon P of area C > 2, we have SA ≤ 5C+5T−3
4 .
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Proof. First, observe that until a bottle-neck or dead-end are encountered, the
algorithm always progresses along the boundary of the polygon. Thus we obtain
a class of “narrow” polygons which are traversed optimally by Algorithm A.

Lemma 1. If Algorithm A does not encounter any bottle-necks or dead-ends for
polygon P , then SA = C + T .

To prove the theorem, let us now assume that P is a counter-example for
our claim, i.e., a polygon such that SA(P ) > 5C(P )+5T (P )−3

4 , which is minimal
in the following sense: out of all counter-examples, P has the minimal area of its
skeleton, and of all such polygons, it has the minimal area C(P ). We will show
through a sequence of lemmas that polygon P does not exist.
First, we obtain that P must have a non-empty skeleton.

Lemma 2. For any polygon P , such that the skeleton of the polygon P is empty
and C > 2, Algorithm A covers P in SA ≤ 5C+5T−3

4 steps.

The proof of the lemma relies on the observation that a polygon with an
empty skeleton cannot contain a 3 × 3 polygon as a sub-polygon; we postpone
it to the Appendix.
As a consequence of the lemma, we may assume that the skeleton of P is

non-empty. Now, we consider the structure of the boundary cells of any polygon
P . For a boundary cell c, let dist(c) ≥ 1 denote the length of the shortest path
from c to a nearest cell of the skeleton of P , according to the metric in which
cells adjacent along sides or across corners are at a distance of 1 from each other
(i.e., boundary cells adjacent to the skeleton along a side or across a corner have
dist(c) = 1).
Note that the set of boundary cells of a polygon has an empty skeleton. We

now observe that for our minimal counter-example P , the polygon cannot contain
any boundary cells with dist(c) > 2. The proof uses simple local arguments
(similar to those in the proof of Lemma 2) to show that otherwise there would
exist a smaller counter-example P ′ to our claim; we omit the details from this
extended abstract.

Lemma 3. For the minimal counter-example P , any boundary cell c fulfills
dist(c) ≤ 2.

We now proceed to the main part of the proof. Taking into account the above
lemma and the fact that there exists only a finite number of polygons having a
given skeleton, subject to the condition dist(c) ≤ 2 for any boundary cell c, we
will now analyze the structure of polygon P by characterizing its skeleton, only.
A skeleton of a polygon will be called elementary if it forms a connected

region of the plane (possibly across corners) and consists of at most 5 cells.
There exist exactly 83 elementary skeletons which are distinct up to isometry.
Taking into account Lemma 3, by an exhaustive computer search, we verify the
following claim.

Lemma 4. The minimal counter-example P does not have an elementary skele-
ton.



An Improved Strategy for Exploring a Grid Polygon 9

To complete the proof of the theorem, we now show that there does not
exist a minimum counter-example P which has a non-elementary skeleton. First,
observe that if polygon P had no dead-ends and no bottle-necks, then it would
not be a valid counter-example by Lemma 1. Likewise, supposing that P had
no bottle-necks, and the only dead-ends which appeared in the exploration were
traversed as shown in Fig. 3(a). Then, we immediately obtain SA(P ) ≤ 7

6C(P )+
T (P ), and once again P is not a valid counter-example. Hence, at some point
during the exploration we must encounter a bottle-neck or a dead-end which is
traversed differently than those from Fig. 3(a). Now, we apply a local replacement
argument to show that the claim of the theorem holds for P if it holds for all
polygons with a skeleton smaller than that of P . The part of the polygon in
which we apply the replacement is determined by the earliest step during the
exploration of P , at which any one of the following events occurs:

(a) (b)

P

a

K1

Fig. 3. Situations encountered during exploration: (a) special kinds of dead-ends, (b)
split cell a of the set of unvisited cells (across a corner).

(1) A dead-end is encountered, and it is traversed differently than that shown
in Fig. 3(a).

(2) A bottle-neck is encountered.
(3) A cell a is encountered, such that a is adjacent across a corner to the robot’s
location, and a is a split cell with respect to the set of unvisited cells of the
polygon, see Fig. 3(b).

The proof is completed by analysing each of the cases (1), (2), and (3); we
postpone this to the Appendix. ⊓⊔

2.3 A Tight Example

Theorem 2. The competitive ratio of Algorithm A is exactly 5/4.

Proof. The tight example is obtained by exploring the polygon shown in Fig. 4.
The length of the optimal off-line tour is SOPT = C + 2, and the length of
robot’s tour computed by Algorithm A is SA = 5C−4

4 . The ratio of these two
values precisely corresponds to the competitive ratio of the algorithm:

SA

SOPT
=

5C − 4

4C + 8
−→C→∞

5

4
.
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(a)

b

b

b

(b)

b

b

b

Fig. 4. A tight example for the competitive ratio: (a) The exploration performed by
Algorithm A. (b) The optimal off-line covering path. The exploration starts from the
cell marked with the circle.

3 Lower Bound on the Competitive Ratio

Icking et al. [11] have shown that no exploration strategy of an orthogonal poly-
gon is better than 7

6 -competitive. We obtain a tighter bound by substantially
extending their construction of the family of polygons which serves as a counter-
example.

Theorem 3. Let A be an exploration algorithm using a local view. If A is α-
competitive, then α ≥ 20

17 .

Proof. To prove the theorem, we construct a family of polygons P in such a
way that, for any exploration algorithm E, there exists a polygon P ∈ P of
arbitrarily large area C(P ), such that SE(P ) ≥ 20

17SOPT(P ) − 2.
The considered family P is built up by connecting into a “chain” the ele-

mentary polygons from sets Q, R, S, shown in Fig. 5. More precisely, we put
P =

⋃
n≥1 Pn, and elements of the family Pn, for all n ≥ 1 are constructed from

exactly n polygons from Q∪R∪ S according to the approach described below.
For P ∈ Pn, we will write P = (P1, P2, . . . , Pn), where we have Pi ∈ Q∪R∪ S,
and the following rules are applied:

– We have P = P1 ∪ P2 ∪ · · · ∪ Pn.
– The intersection Pi ∩ Pj is non-empty only for polygons adjacent in the
sequence, i.e., when |i − j| ≤ 1.
– The intersection Pi ∩Pi+1, for all 1 ≤ i < n, consists of exactly two adjacent
cells of each of these polygons, as shaded in Fig. 5, located next to their
North-East and South-West corners, respectively. Note that not every two
polygons Pi, Pi+1 ∈ Q ∪ R ∪ S can be put together so as to fulfill this
condition.
– The following additional rules are fulfilled: P1 ∈ Q. Moreover, for all 1 ≤ i <

n, we have Pi+1 ∈ Q if and only if Pi ∈ S.
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(a)

Q

R

S

(3)

(4)
(4)

(6)

(1)

(2)

(7) (7) (7) (7) (3)

(1) (1) (1)

(1)

(1)
(6)

(5)

(6)

(5)

(6)

(5)

(6)

(5)

(6)

(5)

label SOPT (Pi) Si

(1) 24 28
(2) 18 22
(3) 12 14
(4) 8 10
(5) 6 8
(6) 10 12
(7) 14 16

(b)

Fig. 5. Construction of polygons for the lower bound: (a) Sets of polygons Q, R, S .
Sets R and S also contain the respective polygons reflected with respect to the line
North-East / South-West. (b) Example of a polygon belonging to P4.

Given any algorithm E, for any n ≥ 1 we now construct by means of E
a sub-optimal robot’s route τ = (c0, c1, c2, . . . , cS) covering some polygon P =
(P1, P2, . . . , Pn) ∈ Pn, see Appendix B. Here, ct denotes the location of the robot
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after t steps of exploration, S is the length of the route, and cS = c0. Let Si

denote the length of route τ when restricted to the cells belonging to polygon
Pi, i.e., the subsequence of τ obtained by removing all cells from outside Pi and
then compacting identical adjacent elements. By the construction of polygon P ,
we have: S ≥ 2 +

∑
1≤i≤n(Si − 2). Moreover, the property of the constructed

route τ is such that Si > SOPT(Pi), with the minimal possible value of Si for
different types of polygons Pi ∈ Q ∪R∪ S listed in Fig. 5. Taking into account
that for any polygon P ∈ Pn we have SOPT(P ) = 2 +

∑
1≤i≤n(SOPT(Pi) − 2),

we obtain:
S

SOPT(P )
≥

∑
1≤i≤n(Si − 2)

∑
1≤i≤n(SOPT(Pi) − 2)

− O(1/n).

By finding the minimum possible value of the above expression for the values
stated in Fig. 5, subject to the constraint that not more than n/2 of the polygons
Pi belong to S (by the construction of family Pn), we obtain S

SOPT(P ) ≥ 20
17 −

O(1/n). Such a bound is in fact asymptotically tight when we have, for odd values
of i, that Pi ∈ Q ∪R with Si = 28 and SOPT(Pi) = 24, whereas for even values
of i, Pi ∈ S with Si = 16 and SOPT(Pi) = 14. Note that: (28−2)+(16−2)

(24−2)+(14−2) = 20
17 .

This completes the proof of the theorem.

4 Final remarks

We have presented a new exploration strategy for a robot with limited view
in a grid polygons, having an improved competitive ratio of 5/4. The strategy
from Algorithm A requires memory which is linear with respect to the input
size. Moreover, by modifying the final step of the algorithm so that the sub-
exploration of the cut-off polygon using a recursive call to Algorithm A, rather
than by the optimal off-line approach, one can also implement the local actions
of the robot in polynomial time, without affecting the competitive ratio of the
algorithm.
It would be interesting to ask about the effect of additional restrictions on

the memory of the robot on the competitive ratio of the approach. In the wider
context of graph exploration, explorations with bounded memory have been the
topic of intensive study [4,6,15]. For our problem, it is easy to see that Θ(log C)
memory is necessary and sufficient to cover the polygon and to terminate at
the starting location after O(C) steps, where C is the area of the polygon. This
is because the location of the robot can be identified by using coordinates of
size Θ(log C), whereas exploration of a single column of the polygon, as well
as traversal along its boundary, require at most constant memory. It would be
interesting to study the trade-off between the amount of allowed memory and
the precise value of the competitive ratio of the strategy. One may also ask
about competitive strategies in which the robot has extremely limited memory,
but is allowed to leave and detect pebbles on the cell of its location and the cells
adjacent to it.
Finally, we note that the lower bound on the competitive ratio shown in

Section 3 holds for any exploration algorithm in the considered scenario, but
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it only describes the worst-case performance of algorithms. It is possible that
there exist randomized algorithms with a competitive ratio better than 20/17 in
expectation; we leave this as a topic for future study.
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A Analysis of Algorithm A (Theorem 1)

A.1 Proof of Lemma 2

Proof. Clearly, no bottle-necks are ever encountered in the exploration of poly-
gon P . Moreover, if polygon P has no dead-end, then the algorithm covers P in
C + T steps. If a dead-end is encountered in P , the proof proceeds by induction
on the area of P .
Let us consider the first dead-end encountered during the exploration. Let us

mark this cell by 6, as shown in Fig 6(a). Then, three of the cells adjacent to the
cell 6 have already been visited. Let us denote these cells by 1, 3, 5, respectively.
Moreover, all the enumerated cells must belong to the polygon, and the cell
marked with x does not belong to the polygon. With no loss of generality we
may thus assume that the polygon is of the shape shown in Fig. 6(b). Let us
divide the polygon into two parts, P1 and P2, as shown in the figure. It is
immediate to see that C(P1) > 2, hence the inductive claim holds for P1. There
are two possible cases.

– If C(P2) = 2 then C(P ) = C(P1) + 6, T (P ) = T (P1) + 2 and

S(P ) = S(P1) + 10 ≤
5

4
(C(P1) + T (P1) − 3 + 8) =

5

4
(C(P ) + T (P ) − 3)

– If C(P2) > 2 then C(P ) = C(P1)+C(P2)+4 and T (P ) = T (P1)+T (P2)+2.

S(P ) = S(P1) + S(P2) + 8 ≤
5

4
(C(P1) + T (P1) − 3) +

5

4
(C(P2) + T (P2) − 3) + 8

<
5

4
(C(P ) + T (P ) − 3)

(a)

7 5 4

x 6 3

1 2
(b) P1

P2

Fig. 6. Dead-end encountered during the exploration of a polygon with an empty
skeleton.

A.2 Analysis of Case (1): a dead-end

We can assume that P is a polygon with a skeleton size of n, and that the skele-
ton of P is not elementary. Then, next to the encountered dead-end (traversed
differently than in Fig. 3(a)), the skeleton of polygon P must either include one
of endings shown in Fig. 7, or else be disconnected.
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Fig. 7. Possible endings of the skeleton. Solid lines denote the outline of the skeleton.

We now attempt to cut off a part of polygon P to obtain a new polygon P ′,
in such a way that the robot’s tour within P ′ is the same as within P , except for
a local modification. By an analysis of all possible cases, it can be shown that
when considering an ending of the skeleton, at least one of the modifications from
Fig. 8-12 can be applied. If the skeleton is disconnected, and these modifications
cannot be applied, then one of the modifications from Fig. 13 can be applied
instead.
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∆T = 0

∆ = −1

u u

∆S = 6
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polygon boundary

robot tour

u visited cells
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∆S = 6

∆C = 4

∆T = 1

∆ = − 1
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interior cells

cut off

∆S = 6

∆C = 5

∆T = 0

∆ = − 1

4

∆S = 6

∆C = 4

∆T = 1

∆ = − 1

4

Fig. 8. Reductions of endings of the polygon skeleton. Polygon P is shown in odd
columns, the outcome P ′ of the modification is shown in even columns.

Let us now compute the value of the following expression

∆ = ∆S −
5

4
(∆C + ∆T ) (1)

where: ∆S = SA(P ) − SA(P ′), ∆C = C(P ) − C(P ′), ∆T = T (P ) − T (P ′).
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Fig. 9. Reductions of endings of the polygon skeleton (continued).
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Fig. 10. Reductions of endings of the polygon skeleton (continued).
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Fig. 11. Reductions of endings of the polygon skeleton (continued).
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Fig. 12. Reductions of endings of the polygon skeleton (continued).
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Fig. 13. Reductions for a disconnected skeleton of the polygon. Polygon P is shown in
odd columns, the outcome P ′ of the modification is shown in even columns.

Since P ′ has a smaller skeleton than P , and P was by assumption the minimal
counter-example to the claim, we have:

SA(P ′) ≤
5C(P ′) + 5T (P ′) − 3

4
. (2)

Consequently:

SA(P ) ≤ SA(P ′) +
5

4
(∆C + ∆T ) ≤

5

4
C(P ) −

3

4
+

5

4
T (P ) =

5C(P ) + 5T (P )− 3

4
,

hence, P is not a counter-example to the claim.

A.3 Analysis of Case (2): a bottle-neck

A schematic list of possibilities corresponding to this case is shown in Fig. 14,
where c denotes the bottle-neck (note that in some cases c is adjacent to the
outline of P along an edge, yet it remains a bottle-neck since the robot is unaware
of this at the time when the bottle-neck is identified). For each of these cases,
we define a polygon K1 as shown in Fig. 14, as the polygon consisting of cut-off
unvisited cells, possibly augmented by the bottle-neck c and the cell of the robot’s
current location. A crucial observation is that since by definition of Case (2),
since no relevant dead-ends or split cells across a corner were detected before the
bottle-neck, by the properties of Algorithm A, polygon K1 will have an empty
set of split cells, T (K1) = 0.
As shown in Fig. 14, for each of the possibilities, we divide polygon P into two

polygons P1 and P2, such that P = P1 ∪P2, K1 ⊂ P1, up to local modifications,
the robot visits cells of polygon P , when restricted to each of the sub-polygons
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Fig. 14. Possible arrangements of cut-off polygons next to a bottle-neck.
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P1 and P2, in the same order as for each of these polygons explored separately.
It is also evident that T (P ) = T (P1) + T (P2).
The length SA(P1) of the robot’s tour of P1 is easily decomposed into the sum

of three components, SA(P1) = SK +SL1 +SL2 or SA(P1) = SK +SL1 +SL2 +1
(depending on the considered case), where:

– SK is the length of the sub-exploration for polygon K1. Since T (K1) = 0,
we have SK ≤ 1

4 (5C(K1) − 3) by the inductive assumption in Theorem 1.
– SL1 is the length of the exploration associated with the region L1, which
consists of those cells of the skeleton of P1 and those cells of the first layer
of boundary cells of P1 (i.e., cells c′ with dist(c′) = 1 in P1), which do not
belong to K1. Taking into account Fig. 3(a), we put SL1 ≤ 7

6C(L1).
– SL2 is the length of the exploration associated with the region L2, which con-
sists of the second layer of boundary cells of P1 (i.e., cells c′ with dist(c′) = 2
in P1). We have SL2 = C(L2) + T (P1).

Hence, SA(P1) ≤ 1
4 (5C(K1) − 3) + 7

6C(L1) + C(L2) + T (P1) or SA(P1) ≤
1
4 (5C(K1) − 3) + 7

6C(L1) + C(L2) + T (P1) + 1. By taking into account that
C(P1) = C(K1) + C(L1) + C(L2), for sufficiently large polygons (with C(K1) >
10) we obtain the following relations:

– For cases (a,e): SA(P1) ≤
5
4C(P1) + 5

4T (P1) − 2.
– For cases (b): SA(P1) ≤

5
4C(P1) + 5

4T (P1) − 3 1
4 .

– For cases (c-d’): SA(P1) ≤
5
4C(P1) + 5

4T (P1) − 2 3
4 .

The above relations also hold when C(K1) ≤ 10; we verify this by exhaustively
checking all cases.
We now observe that since P2 also has a smaller skeleton than P , by assump-

tion we have from Theorem 1, SA(P2) ≤
1
4 (5C(P2)+5T (P2)− 3). Moreover, the

following relations hold:

– For cases (a,c’,d’): C(P ) = C(P1) + C(P2) − 8 and SA(P ) ≤ SA(P1) +
SA(P2) − 8.
– For case (b): C(P ) = C(P1)+C(P2)−17 and SA(P ) ≤ S(P1)+SA(P2)−18.
– For cases (c,d): C(P ) = C(P1)+C(P2)−15 and SA(P ) ≤ S(P1)+SA(P2)−16.
– For case (e): C(P ) = C(P1) + C(P2) − 3 and SA(P ) ≤ S(P1) + SA(P2) − 2.

In each of the cases (a-e), by combining the corresponding relations for C(P ),
SA(P ), SA(P1), and SA(P2), we once again obtain SA(P ) ≤ 1

4 (5C(P )+5T (P )−
3), hence P is not a counter-example to the claim.

A.4 Analysis of Case (3): a split cell across the corner

Finally, we consider the case when the robot first encounters a split-cell a, as
shown in Fig. 15. Note that such a split cell is not a bottle-neck, hence the
robot will embark on a sub-exploration of polygon K1 only when it reaches a
bottle-neck in some later step. Nevertheless, with respect to cell a we can divide
polygon P into two polygons P1 and P2, such that P = P1∪P2, K1 = K11∪K12,
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P P 2
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P 1
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2

a

K1

K1

1

1

Fig. 15. Local reduction of the polygon next to a corner split-cell of the set of unvisited
cells.

K11 ⊂ P1, and, up to local modifications, the robot visits cells of polygon P ,
when restricted to each of the sub-polygons P1 and P2, in the same order as for
each of these polygons explored separately. We note that polygon K11 has no
split cells. Acting similarly as in Case (2), we obtain T (P ) = T (P1) + T (P2),
C(P ) = C(P1) + C(P2) − 8, and S(P1) ≤ 5

4C(P1) + 5
4T (P1) − 2. This leads

to the relation SA(P ) ≤ 1
4 (5C(P ) + 5T (P ) − 3), hence once again, P is not a

counter-example to the claim of the theorem.

B Lower bound: covering a polygon P ∈ Pn

The construction below simulates an adversary which discloses local views to the
robot. In this way, a polygon P ∈ Pn is selected depending on the decisions taken
by the robot during its traversal τ , so that traversal τ is sub-optimal for polygon
P . We define three separate blocks of rules for disclosing the view (cases (1), (2),
and (3)), each of which reveals to the robot exactly one polygon Pi. Case (1)
reveals a polygon Pi ∈ Q, while cases (2) and (3) reveal a polygon from either
R and S. We will repeat such a procedure exactly n times. Initially, the first
polygon P1 is constructed according to case (1); subsequent choices of cases (1),
(2), and (3) depend on the route chosen by the robot.
The robot starts with an initial view described in Fig. 16 (a), and assume

without loss of generality that it decides to goes East in the first step.

(1) The cell North (Fig. 16 (a)), South (Fig. 16 (a’)) or West(Fig. 16 (a”)) to the
robot does not belong to the polygon and in the previous step robot moved
East, East or North, respectively.
First, let’s consider case (a). Further, the robot can move in one of three
directions: South, West or East, which is shown if Fig. 16 (b) and (c).
– If the robot moves due South or West we do not add any cells to the
polygon adjacent to a bold edge of the polygon (Fig. 16 (b)). Thus the
robot must visit two of the white cells twice. So, the competitive ratio
in the white region is equal to at least 8

6 , which is more than
20
17 .

– If the robot moves due East we add some cells to the polygon, as demon-
strated in Fig. 16 (c). Now, the robot can move in one of four directions:
East, West, South and North, as shown in Fig. 16 (d-e).
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In the cases shown in Fig. 16 (b,d) we add some cells to the polygon. We
observe that the robot eventually has to visit at least two of the white cells
twice.

In the case shown in Fig. 16 (e) we add some cells to the polygon. We observe
that the robot eventually has to visit four of the white cells twice.

Once the robot has entered one of the gray cells, we continue the construction
as described in cases (2) and (3), depending on the orientation of the robot.

(a)

(a’)

(a”)

(c)(b)

(d)

(e)

optimal robot tour

robot tour

current position of the robot

boundary of polygon

Fig. 16. Adversary vs. robot: construction of Pi ∈ Q according to case (1).

The construction of the polygon in cases (a’) and (a”) is identical (up to
isometry of the plane) to case (a).

(2) In the previous step the robot moved North (Fig. 17 (a)) or East (Fig. 17
(a’)).
The analysis of both cases is identical (up to isometry of the plane), so we
describe only the case from Fig. 17 (a).
Considering the situation illustrated in Fig. 17 (a), the robot can now move
to the North, South, East or West, which is shown in Fig. 17 (b)-(d).
– If the robot moves due North, South or East we add new cells to the
polygon, as demonstrated in Fig. 17 (b)-(c). In later steps, once the robot
has moved out from the visible part of polygon, we continue construction
according to cases (2) and (3).
– If the robot moves West, we add some new cells to the polygon as shown
in Fig. 17 (d). In the next step, the robot must move back (East) or
move North.
• If the robot moves East, we add new cells to the polygon according
to Fig. 17 (e) (we do not depict the robot’s path for this case). If at
some later time the robot moves out from the visible part of polygon
we continue the construction according to cases (2) and (3).
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(k) (m)(l)

Fig. 17. Adversary vs. robot: construction of Pi ∈ R ∪ S according to case (2).
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• If the robot moves North, then in the next step it can move East,
move North, or move back (South).
∗ If the robot moves East or South, we also add new cells to the
polygon according to Fig. 17 (e). If at some later time the robot
moves out from the visible part of polygon we continue the con-
struction according to cases (2) and (3).

∗ If the robot moves North (Fig. 17 (f)), we add some cells to
the polygon. It can now either turn back (move South), or move
East.
· If the robot moves South, we add new cells to the polygon, as
shown in Fig. 17 (g). If at some later time the robot moves out
from the visible part of polygon we continue the construction
according to cases (2) and (3).

· If the robot moves East (Fig. 17 (h)), then in the next step it
can move East, turn back (move West), or move South.
– If the robot moves South or West, we add new cells to the
polygon, as demonstrated in Fig. 17 (j). If at some later time
the robot moves out from the visible part of polygon we con-
tinue the construction according to cases (2) and (3).
– If the robot moves East we add new cells to the polygon, as
demonstrated in Fig. 17 (i). We then likewise analyze one more
step the robot can make, as illustrated in Fig. 17 (k)-(m). If at
some later time the robot moves out from the visible part of
polygon we continue the construction according to cases (1),
(2) and (3).

(3) In the previous step robot moved North (Fig. 18 (a)) or East (Fig. 18 (a’)).
The analysis of both cases is identical (up to isometry of the plane), so we
describe only the case from Fig. 18 (a).

– If the robot moves West, South or North we add new cells to the polygon,
as shown in Fig. 18 (b)-(c). If at some later time the robot moves out
from the visible part of polygon we continue the construction according
to cases (2) and (3).
– In the third case we add some cells to the polygon. In the next step the
robot must move North (Fig. 18 (d)) or come back West. If the robot
moves North, then in the next step it can move North, West, East or
come back to the South.
• If the robot comes back to the West, or first moves North and then
due North, South, or West, we add new cells to the polygon, as
demonstrated in Fig. 18 (e). If at some later time the robot moves
out from the visible part of polygon we continue the construction
according to cases (2) and (3).

• In the last remaining case we continue the construction according to
case (1). When the robot enters the cell marked with a circle and
moves from that cell to the West, we add new cells to the polygon
according to Fig. 18 (f). Depending on the robot’s subsequent steps,
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(b)(c)

(a)(a’)

(d)

(e)

(f)

(g) (h) (i)

Fig. 18. Adversary vs. robot: construction of Pi ∈ R ∪ S according to case (3).

we add certain new cells to the polygon, as illustrated in Fig. 18
(g)-(i).

The presented construction always leads to a polygon which belongs to the family
Pn.


