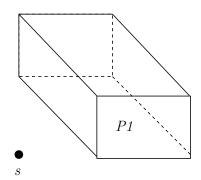
Offline Bewegungsplanung: Polyeder

Elmar Langetepe University of Bonn

• Startpunkt s,

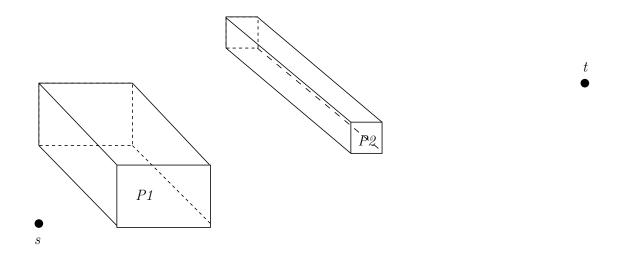
• Startpunkt s, Zielpunkt t

- Startpunkt s, Zielpunkt t
- Menge von Polyedern

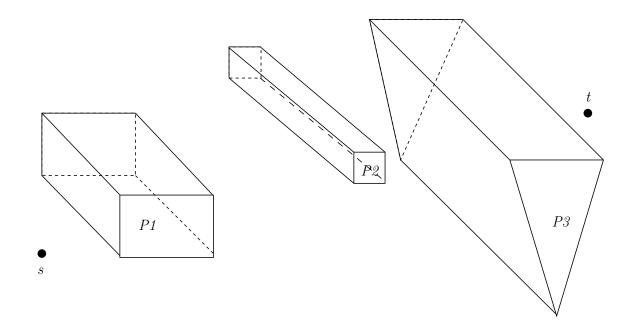


t

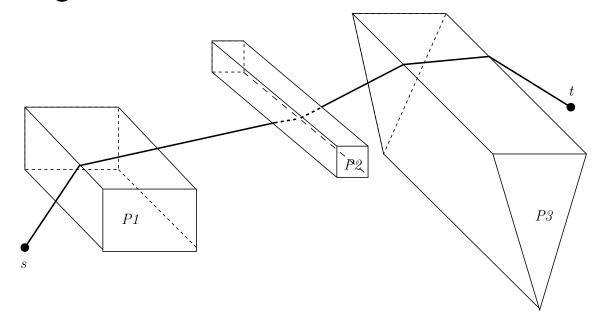
- Startpunkt s, Zielpunkt t
- Menge von Polyedern



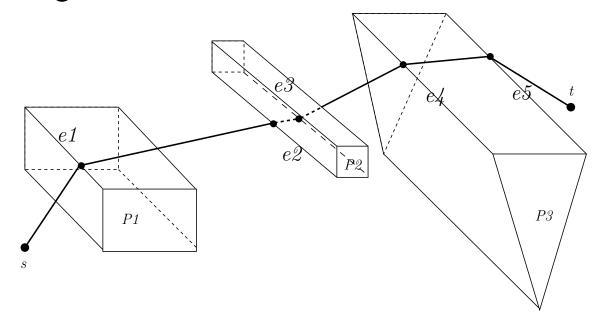
- Startpunkt s, Zielpunkt t
- Menge von Polyedern



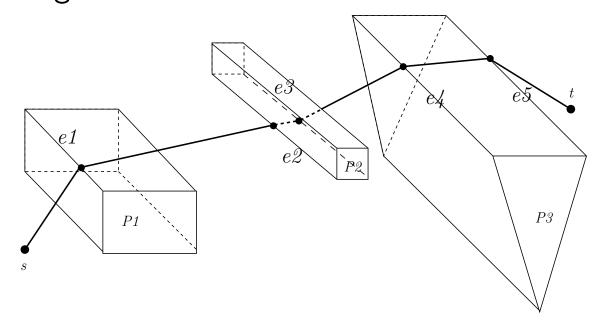
- Startpunkt s, Zielpunkt t
- Menge von Polyedern
- ullet Kürzester Weg von s nach t:

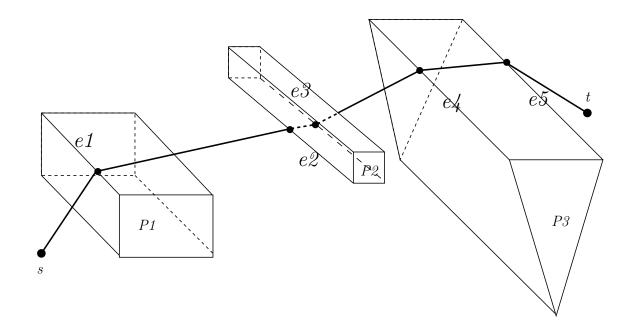


- Startpunkt s, Zielpunkt t
- Menge von Polyedern
- ullet Kürzester Weg von s nach t:

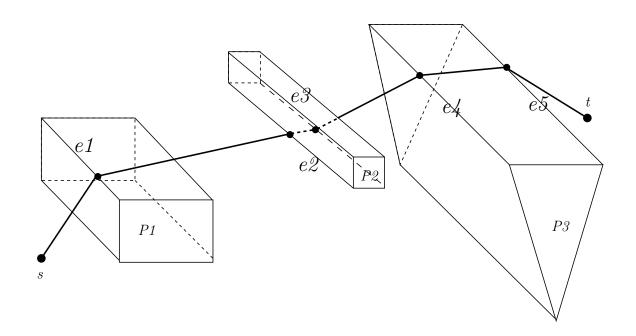


- Startpunkt s, Zielpunkt t
- Menge von Polyedern
- ullet Kürzester Weg von s nach t: NP-hard

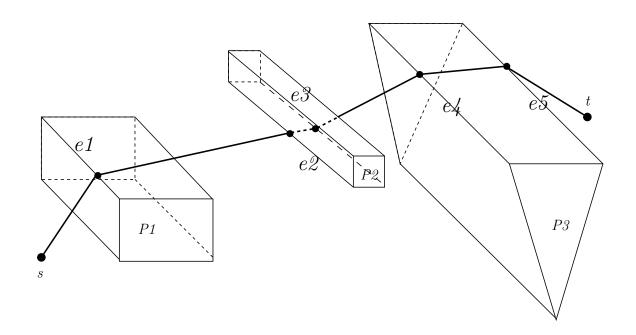




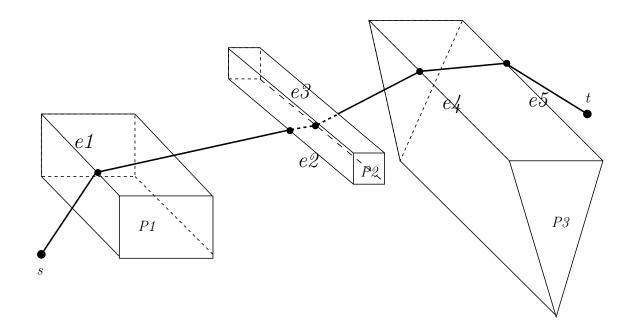
• Teilprobleme



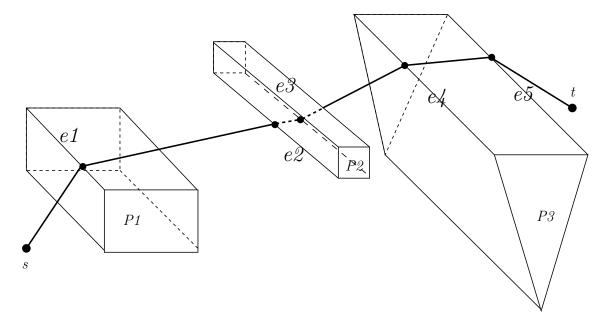
- Teilprobleme
- 1) Kantenreihenfolge



- Teilprobleme
- 1) Kantenreihenfolge
- 2) Verschiebung auf der Kante



- Teilprobleme
- 1) Kantenreihenfolge
- 2) Verschiebung auf der Kante
- Bereits 1) ist NP hard



• Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$

- Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$
- ullet Funktion $f:\Omega' \to \Omega$

- Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$
- Funktion $f: \Omega' \to \Omega$
 - 1. $\forall x' \in \Omega'$: f(x') in polynomieller Zeit (|x'|)
 - 2. $\forall x' \in \Omega'$: $f(x') \in S \Leftrightarrow x' \in S'$

- Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$
- Funktion $f: \Omega' \to \Omega$
 - 1. $\forall x' \in \Omega'$: f(x') in polynomieller Zeit (|x'|)
 - 2. $\forall x' \in \Omega'$: $f(x') \in S \Leftrightarrow x' \in S'$
- 3-SAT NP vollständig

- Reduktion $S' \subset \Omega'$ auf $S \subset \Omega$
- Funktion $f: \Omega' \to \Omega$
 - 1. $\forall x' \in \Omega'$: f(x') in polynomieller Zeit (|x'|)
 - 2. $\forall x' \in \Omega'$: $f(x') \in S \Leftrightarrow x' \in S'$
- 3-SAT NP vollständig
- 3-SAT reduzieren auf Kantenreihenfolge

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen:

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen: Erfüllbarkeit?

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen: Erfüllbarkeit?

Konstruiere Parcours P_{α} , so dass:

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen: Erfüllbarkeit?

Konstruiere Parcours P_{α} , so dass:

ullet Kürzester Weg (Kantenfolge) von s nach t erzeugt Belegung w

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

m Klauseln mit n Variablen: Erfüllbarkeit?

Konstruiere Parcours P_{α} , so dass:

- ullet Kürzester Weg (Kantenfolge) von s nach t erzeugt Belegung w
- w erfüllt $\alpha \Rightarrow$ fertig!

$$\alpha = \bigwedge_{i=1}^{m} (L_{i_1} \vee L_{i_2} \vee L_{i_3}) \text{ mit } L_{i_j} \in \{X_k, \neg X_k\}$$

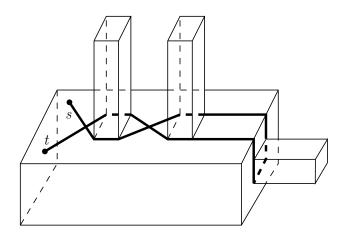
m Klauseln mit n Variablen: Erfüllbarkeit?

Konstruiere Parcours P_{α} , so dass:

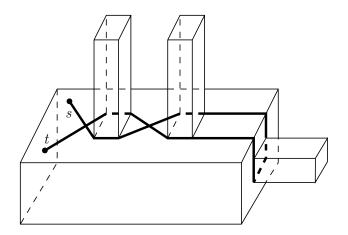
- ullet Kürzester Weg (Kantenfolge) von s nach t erzeugt Belegung w
- w erfüllt $\alpha \Rightarrow$ fertig!
- w erfüllt α nicht \Rightarrow kein w erfüllt α

ullet 2ⁿ Belegungen der n Variablen

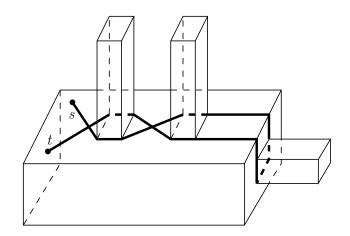
- 2^n Belegungen der n Variablen
- 2ⁿ geodätisch Kürzeste Wege



- 2^n Belegungen der n Variablen
- \bullet 2^n geodätisch Kürzeste Wege
- Eine davon wird die Kürzeste sein



- 2^n Belegungen der n Variablen
- 2ⁿ geodätisch Kürzeste Wege
- Eine davon wird die Kürzeste sein
- Ergibt Variablen-Belegung nach Kantenreihenfolge

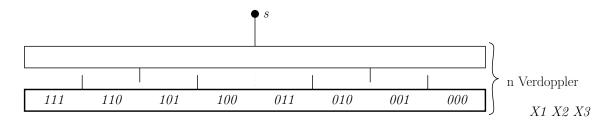


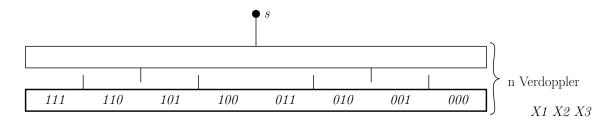
Parcours erzeugen: Prinzip

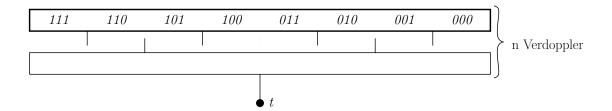
Parcours erzeugen: Prinzip

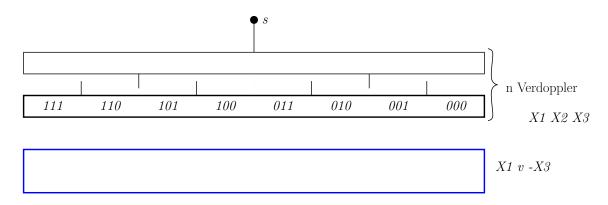
Beispiel: $(X1 \lor \neg X3) \land (\neg X2)$

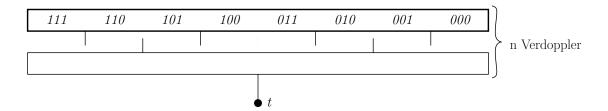
Beispiel:
$$(X1 \lor \neg X3) \land (\neg X2)$$

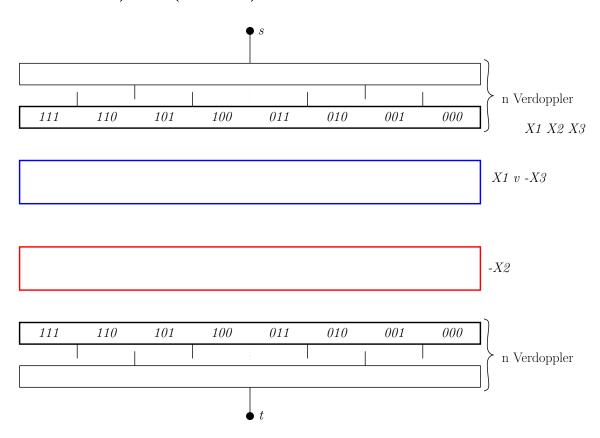


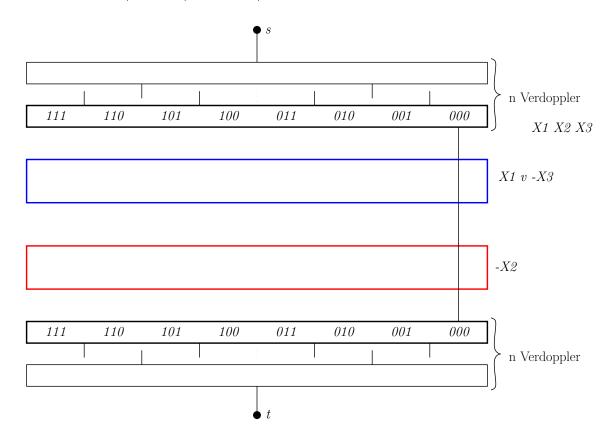


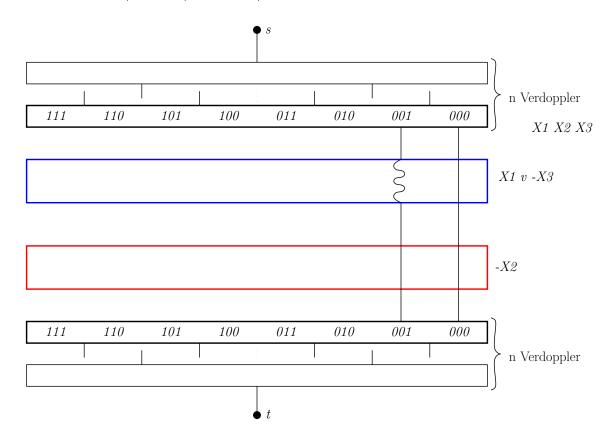


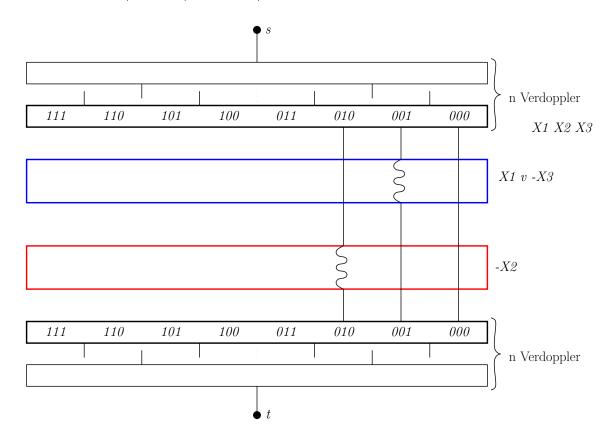


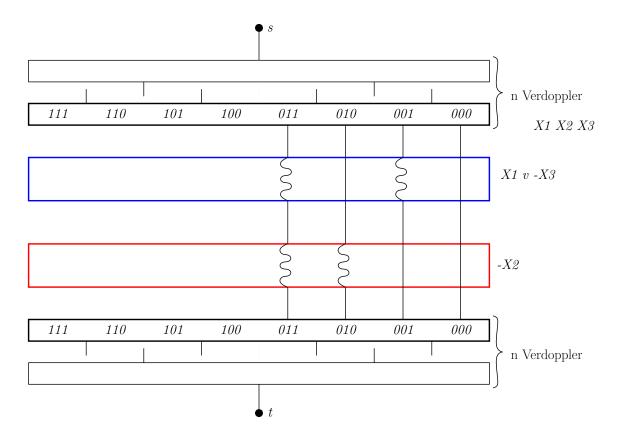


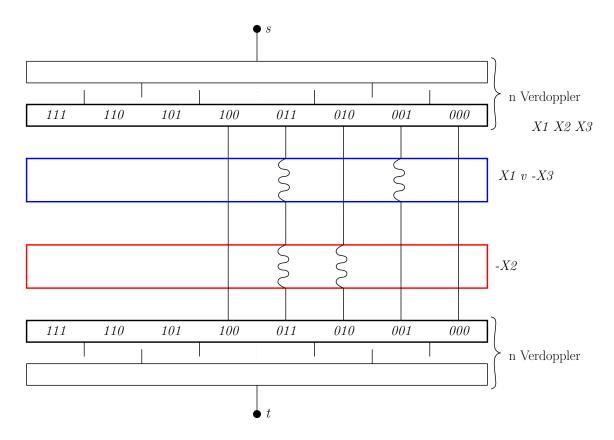


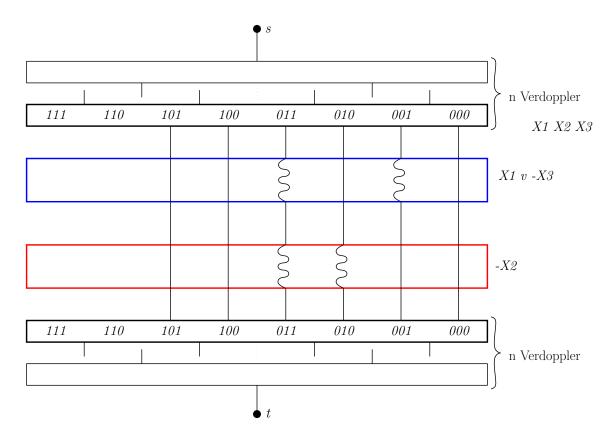


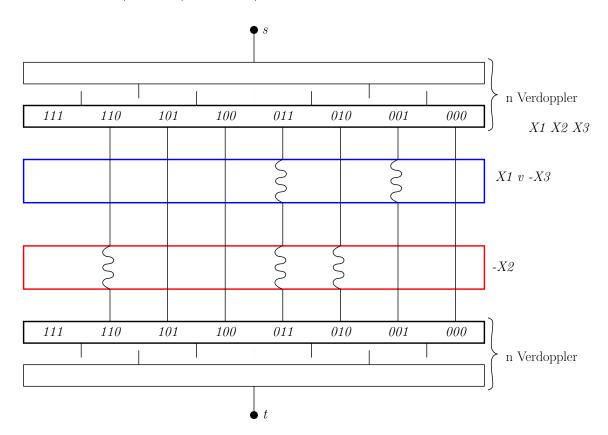


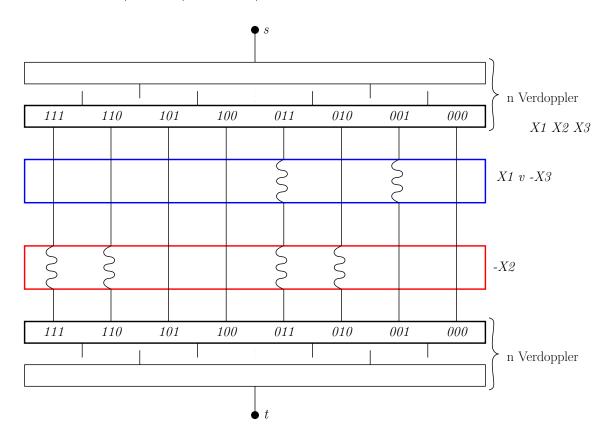






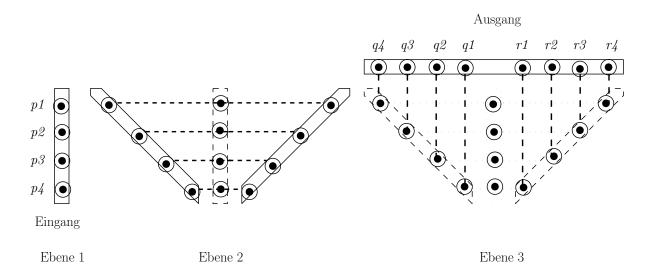






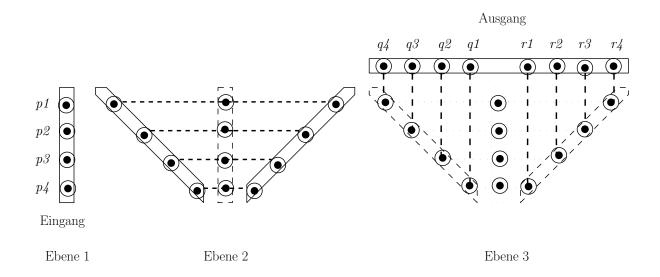
Dünne Platten mit Schlitzen eng hintereinander!

Dünne Platten mit Schlitzen eng hintereinander!



Sukzessive 2^n ungefähr gleichlange Wege erzeugen!

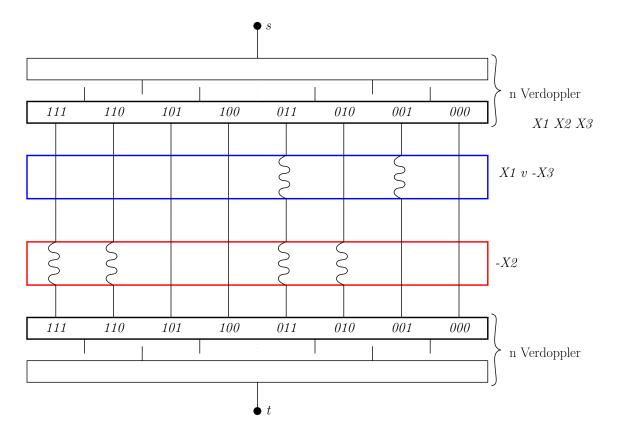
Dünne Platten mit Schlitzen eng hintereinander!



Sukzessive 2^n ungefähr gleichlange Wege erzeugen!

Kantenreihenfolge ist gleich!

Gesamtprinzip: Nacheinander Klauseln!



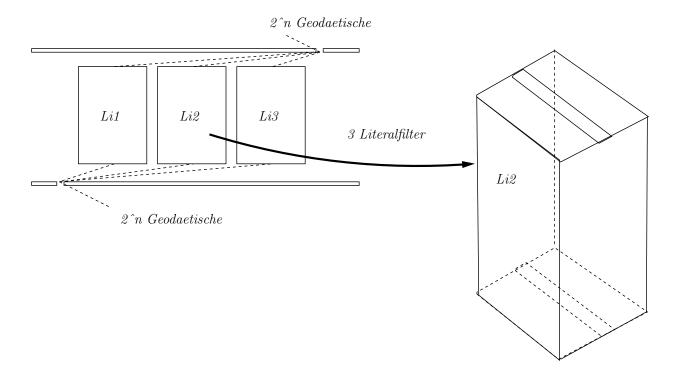
Komponenten: Klauselfilter

Komponenten: Klauselfilter

Sukzessive durch die Klauseln schicken! Auf Literale aufteilen! Dünne Platten!

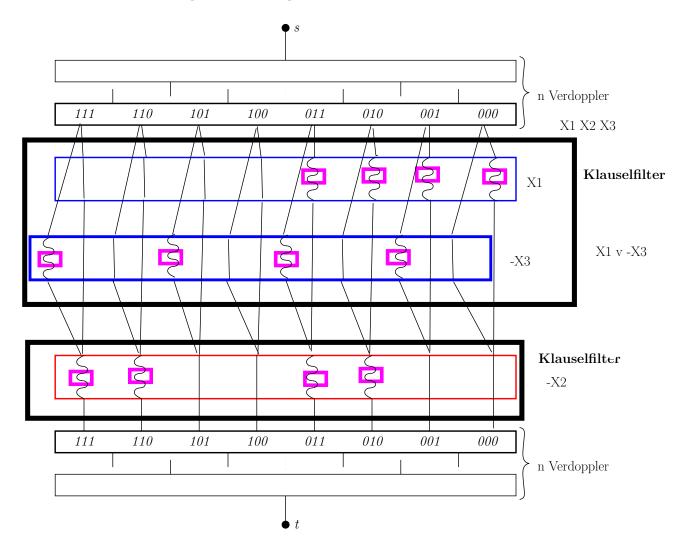
Komponenten: Klauselfilter

Sukzessive durch die Klauseln schicken! Auf Literale aufteilen! Dünne Platten!



Gleich lang, bis auf das, was in den Literalfiltern passiert!

Gesamtprinzip: Einzelne Literale



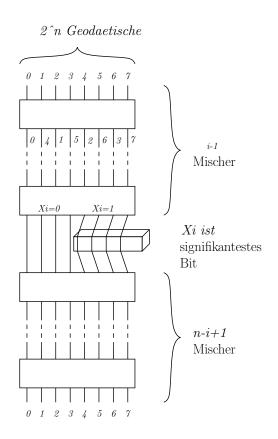
Komponenten: Literalfilter

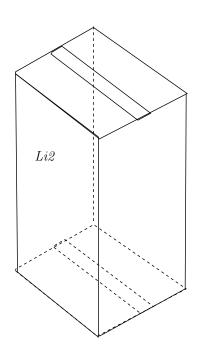
Komponenten: Literalfilter

Wege für signifikantes Bit sammeln!

Komponenten: Literalfilter

Wege für signifikantes Bit sammeln!



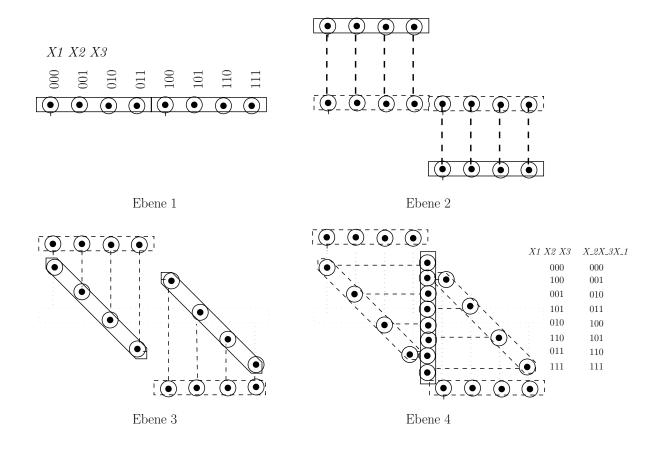


Falls X_i dann $X_i = 0$ verlängern! Falls $\neg X_i$ dann $X_i = 1$ verlängern!

n Mischer pro Literalfilter!!

n Mischer pro Literalfilter!! Ein Mischer erzeugt Bitverschiebung der Wege um 1! Alle bleiben gleich lang!!

n Mischer pro Literalfilter!! Ein Mischer erzeugt Bitverschiebung der Wege um 1! Alle bleiben gleich lang!!



Kürzeste Wege Alg. für P_{α}

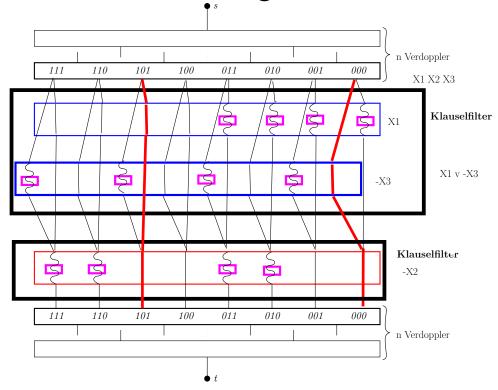
Kürzeste Wege Alg. für P_{α} Ein Weg, der nicht verlängert wird entspricht genau einer Belegung, die die Formel erfüllt!!!

Kürzeste Wege Alg. für P_{α} Ein Weg, der nicht verlängert wird entspricht genau einer Belegung, die die Formel erfüllt!!!

Das kann man der Kantenreihenfolge entnehmen!!

Kürzeste Wege Alg. für P_{α} Ein Weg, der nicht verlängert wird entspricht genau einer Belegung, die die Formel erfüllt!!!

Das kann man der Kantenreihenfolge entnehmen!!



• 2n Verdoppler: O(n) Kanten

• 2n Verdoppler: O(n) Kanten

• m Klauselfilter: je Klauselfilter

- 3 Literalfilter

• 2n Verdoppler: O(n) Kanten

• m Klauselfilter: je Klauselfilter

- 3 Literalfilter

-n Mischer je Filter

Konstruktion insgesamt!!

- 2n Verdoppler: O(n) Kanten
- m Klauselfilter: je Klauselfilter
 - 3 Literalfilter
 - -n Mischer je Filter
- Insgesamt O(mn) Kanten

Konstruktion insgesamt!!

- 2n Verdoppler: O(n) Kanten
- m Klauselfilter: je Klauselfilter
 - 3 Literalfilter
 - -n Mischer je Filter
- Insgesamt O(mn) Kanten
- In polynomieller Zeit konstruierbar

Ergebnis!!!

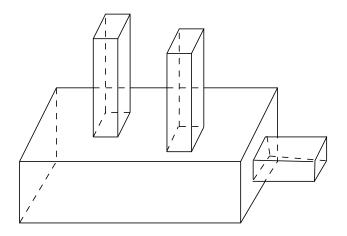
Ergebnis!!!

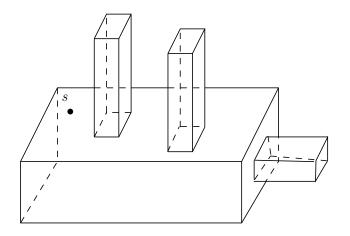
Theorem 1.38 (Canny/Reif): Bestimmung der optimalen Kantenfolge bei der Berechnung Kürzester Wege in polyedrischer Szene in 3D ist NP hart.

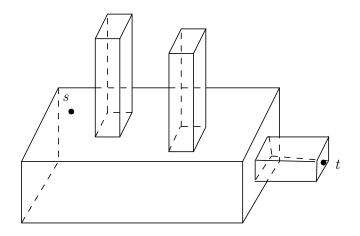
Ergebnis!!!

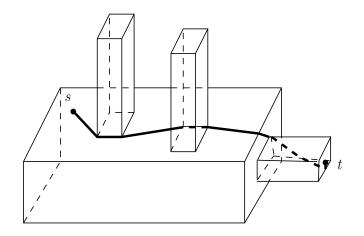
Theorem 1.38 (Canny/Reif): Bestimmung der optimalen Kantenfolge bei der Berechnung Kürzester Wege in polyedrischer Szene in 3D ist NP hart.

Beweis!!

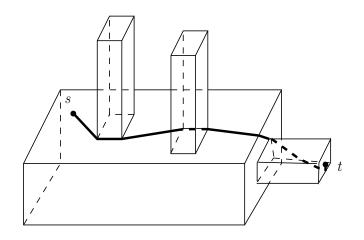




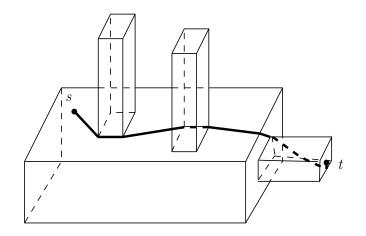




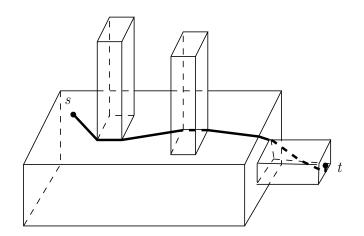
- Natürliche Erweiterung der Polygone auf 3D
- Rand besteht aus Polygonen



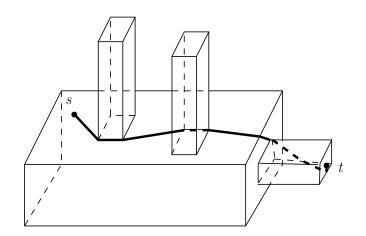
- Natürliche Erweiterung der Polygone auf 3D
- Rand besteht aus Polygonen
- Keine dünnen Stellen:



- Natürliche Erweiterung der Polygone auf 3D
- Rand besteht aus Polygonen
- ullet Keine dünnen Stellen: ϵ -Kugeln



- Natürliche Erweiterung der Polygone auf 3D
- Rand besteht aus Polygonen
- Keine dünnen Stellen: ϵ -Kugeln
- Datenstruktur QEDS: Triangulation Oberflächen, Navigation!

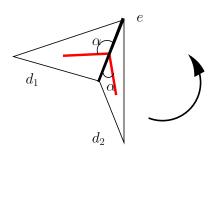


• Lokale Eigenschaften (geodätisch) kürzester Wege

- Lokale Eigenschaften (geodätisch) kürzester Wege
- Alle Kanten: Eingangswinkel=Ausgangswinkel

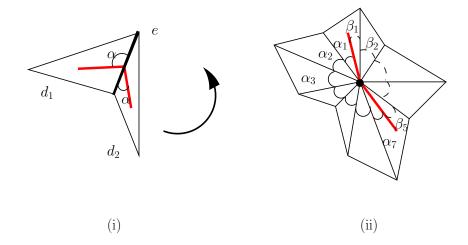


- Lokale Eigenschaften (geodätisch) kürzester Wege
- Alle Kanten: Eingangswinkel=Ausgangswinkel
- Knoten: Nur nicht-konvexe Ecken

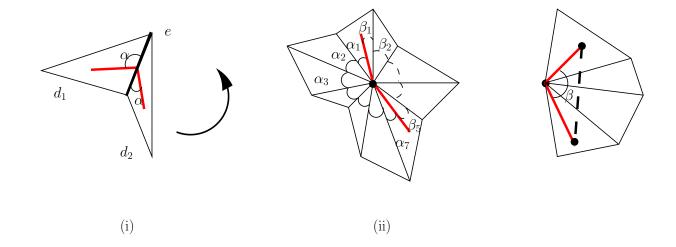


(i)

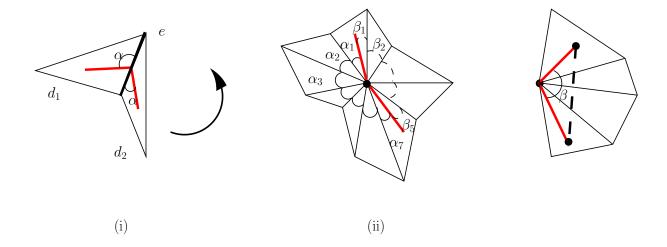
- Lokale Eigenschaften (geodätisch) kürzester Wege
- Alle Kanten: Eingangswinkel=Ausgangswinkel
- Knoten: Nur nicht-konvexe Ecken



- Lokale Eigenschaften (geodätisch) kürzester Wege
- Alle Kanten: Eingangswinkel=Ausgangswinkel
- Knoten: Nur nicht-konvexe Ecken



- Lokale Eigenschaften (geodätisch) kürzester Wege
- Alle Kanten: Eingangswinkel=Ausgangswinkel
- Knoten: Nur nicht-konvexe Ecken
- Konvexe Ecke: Ebenenschnitt



 π_i , π_j kürzeste von s nach b_i resp. b_j

 π_i , π_j kürzeste von s nach b_i resp. b_j

(i) π_i hat keine Selbstschnitte

 π_i , π_j kürzeste von s nach b_i resp. b_j

- (i) π_i hat keine Selbstschnitte
- (ii) π_i schneidet jede Fläche max. einmal

 π_i , π_j kürzeste von s nach b_i resp. b_j

- (i) π_i hat keine Selbstschnitte
- (ii) π_i schneidet jede Fläche max. einmal
- (iii) π_i , π_j kreuzen sich nicht im Innern einer Fläche

 π_i , π_j kürzeste von s nach b_i resp. b_j

- (i) π_i hat keine Selbstschnitte
- (ii) π_i schneidet jede Fläche max. einmal
- (iii) π_i , π_j kreuzen sich nicht im Innern einer Fläche

Beweis!!! Lokal verkürzbar! (Tafel)

ullet Locus approach: Startpunkt s fest

- ullet Locus approach: Startpunkt s fest
- Nur letzte Schritte des Weges konkret

- ullet Locus approach: Startpunkt s fest
- Nur letzte Schritte des Weges konkret
- Kombinatorisch gleiche zusammenfassen

- ullet Locus approach: Startpunkt s fest
- Nur letzte Schritte des Weges konkret
- Kombinatorisch gleiche zusammenfassen
- Zunächst nur Intervalle auf Kanten betrachten

- Locus approach: Startpunkt s fest
- Nur letzte Schritte des Weges konkret
- Kombinatorisch gleiche zusammenfassen
- Zunächst nur Intervalle auf Kanten betrachten
- Sukzessive erweitern: Continous Dijkstra

- Locus approach: Startpunkt s fest
- Nur letzte Schritte des Weges konkret
- Kombinatorisch gleiche zusammenfassen
- Zunächst nur Intervalle auf Kanten betrachten
- Sukzessive erweitern: Continous Dijkstra
- In die Dreiecke fortpflanzen

- Locus approach: Startpunkt s fest
- Nur letzte Schritte des Weges konkret
- Kombinatorisch gleiche zusammenfassen
- Zunächst nur Intervalle auf Kanten betrachten
- Sukzessive erweitern: Continous Dijkstra
- In die Dreiecke fortpflanzen
- ullet Query Struktur für alle Punkte auf P

Kombinatorik: Gesamtweg analysieren!

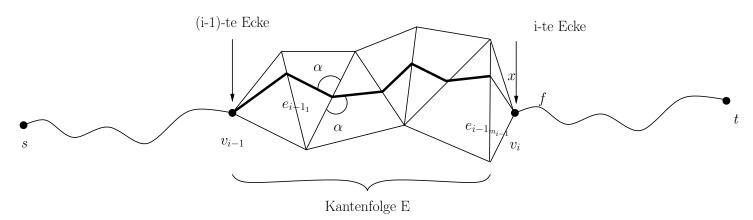
Kombinatorik: Gesamtweg analysieren!

Folge von Kanten und Knoten!

Kombinatorik: Gesamtweg analysieren!

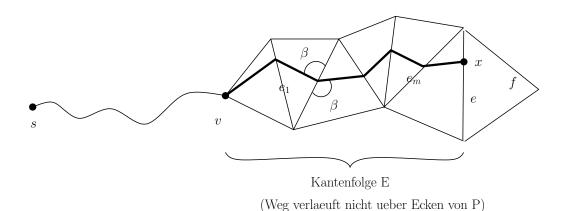
Folge von Kanten und Knoten!

$$\pi = \underbrace{v_0}_{\text{Kanten}}, \underbrace{e_{1,1}, \dots, e_{1,m_1}, v_1}_{\text{2. Ecke}}, \underbrace{e_{2,1}, \dots, e_{2,m_2}, v_2, \dots, e_{k-1,1}, \dots, e_{k-1,m_{k-1}}, v_k}_{\text{Kanten}}$$

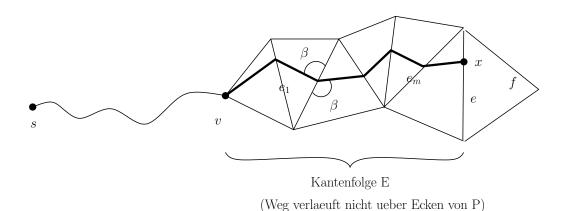


(Weg verlaeuft nicht ueber Ecken von P)

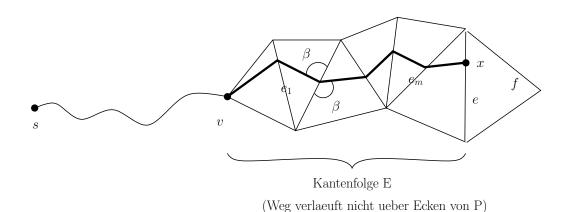
ullet Kante e, letzter Knoten v, Kantenfolge E



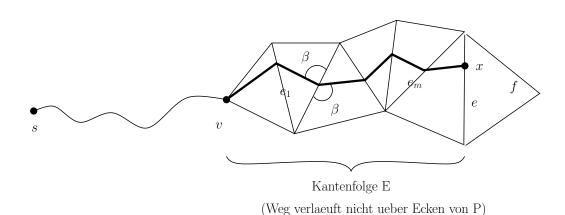
- ullet Kante e, letzter Knoten v, Kantenfolge E
- Kombinatorisch gleiche zuammenfassen,



- ullet Kante e, letzter Knoten v, Kantenfolge E
- Kombinatorisch gleiche zuammenfassen, Dreiecke nicht beachten



- ullet Kante e, letzter Knoten v, Kantenfolge E
- Kombinatorisch gleiche zuammenfassen, Dreiecke nicht beachten
- Optimalitätsintervall: Def. 1.42

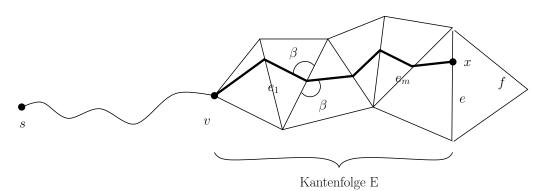


- ullet Kante e, letzter Knoten v, Kantenfolge E
- Kombinatorisch gleiche zuammenfassen, Dreiecke nicht beachten
- Optimalitätsintervall: Def. 1.42

 $I(v,\mathsf{E}) := \{x \in e | \exists \mathsf{K\"{u}rzeste} \ \delta \ \mathsf{von} \ s \ \mathsf{nach} \ x \ \mathsf{mit} \}$

•
$$\delta \cap \mathsf{INT}(f) = \emptyset$$

• δ endet mit v, e_1, \ldots, e_m, x .



Lem. 1.43 Eigenschaften: $I(v, \epsilon)$

- (i) Jede solche Menge I(v, E) ist Intervall auf e (evtl. leer).
- (ii) Zwei verschiedene Intervalle können sich nicht überlappen.
- (iii) e wird von Intervallen I(v, E) ganz überdeckt.

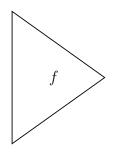
Beweis!!! Gegeben: Kante e, letzter Knoten v, Kantenfolge E

• $I(v, \mathsf{E})$ leer \Rightarrow fertig!

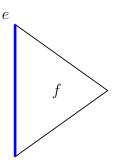
- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)

- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$

- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$



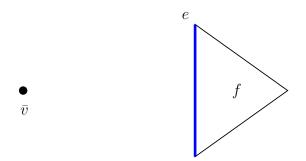
- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$



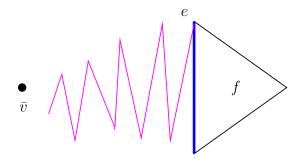
• $I(v, \mathsf{E})$ leer \Rightarrow fertig!

• Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)

ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$

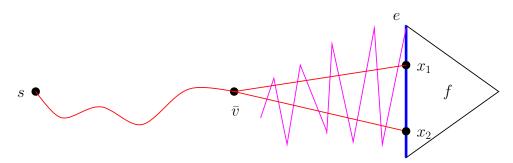


- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$



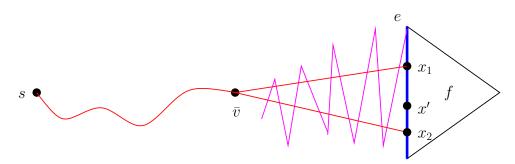
E (aufklappen in Ebene zu f)

- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$



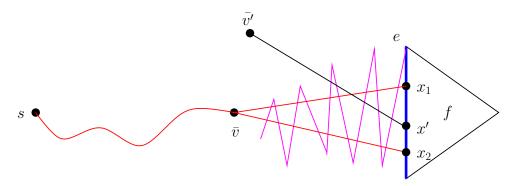
E (aufklappen in Ebene zu f)

- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$



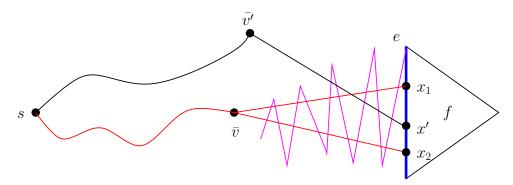
E (aufklappen in Ebene zu f)

- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$



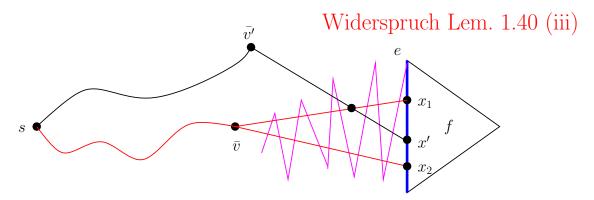
E (aufklappen in Ebene zu f)

- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$



E (aufklappen in Ebene zu f)

- $I(v, \mathsf{E})$ leer \Rightarrow fertig!
- Annahme: Es gibt zwei Punkte x_1 und x_2 in I(v, E)
- ullet Zu zeigen: Alle Punkte dazwischen gehören zu $I(v, \mathsf{E})$



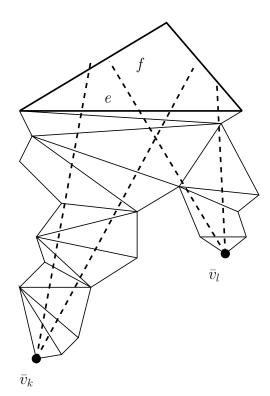
E (aufklappen in Ebene zu f)

• Gleiche Argumentation geht auch!!

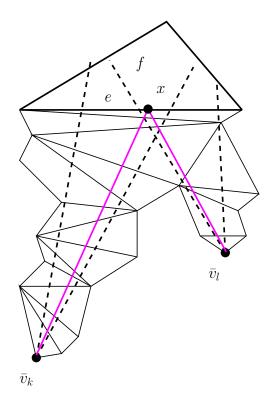
Intervalle I(v, E) überlappen sich nicht

- Gleiche Argumentation geht auch!!
- Schönere Argumentation!!

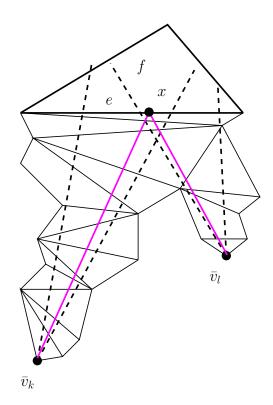
- Gleiche Argumentation geht auch!!
- Schönere Argumentation!!



- Gleiche Argumentation geht auch!!
- Schönere Argumentation!!

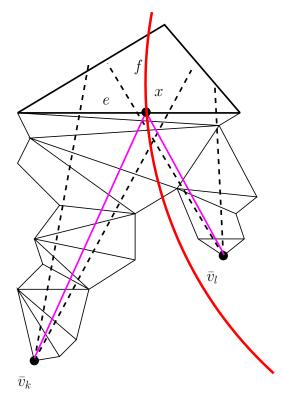


- Gleiche Argumentation geht auch!!
- Schönere Argumentation!!



$$|\bar{v}_k - x| + d(v_k, s) = |\bar{v}_l - x| + d(v_l, s)$$

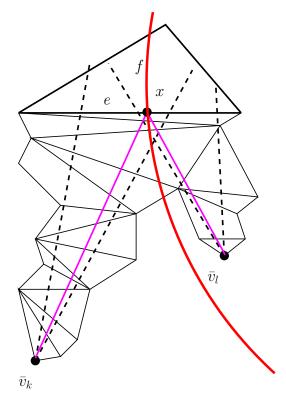
- Gleiche Argumentation geht auch!!
- Schönere Argumentation!!



$$|\bar{v}_k - x| + d(v_k, s) = |\bar{v}_l - x| + d(v_l, s)$$

Hyperbel

- Gleiche Argumentation geht auch!!
- Schönere Argumentation!!



$$|\bar{v}_k - x| + d(v_k, s) = |\bar{v}_l - x| + d(v_l, s)$$

Hyperbel

Genau ein x!!!

Klar!

Klar! Jeder Punkt $x \in e$ wird von einem Kürzesten Weg besucht!

Klar! Jeder Punkt $x \in e$ wird von einem Kürzesten Weg besucht!

Insgesamt:

Klar! Jeder Punkt $x \in e$ wird von einem Kürzesten Weg besucht!

Insgesamt: Lem. 1.43:

Klar! Jeder Punkt $x \in e$ wird von einem Kürzesten Weg besucht!

Insgesamt: Lem. 1.43:

- (i) Jede solche Menge I(v, E) ist Intervall auf e (evtl. leer).
- (ii) Zwei verschiedene Intervalle können sich nicht überlappen.
- (iii) e wird von Intervallen I(v, E) ganz überdeckt.

Alle $I(v, \mathbf{E})$ berechnen!

Alle $I(v, \mathbf{E})$ berechnen!

• Wie viele?

Alle I(v, E) berechnen!

- Wie viele?
- Was machen wir mit dem Inneren der Dreiecke?
- Lem. 1.44: Kante e, O(n) Intervalle $I(v,\epsilon)$

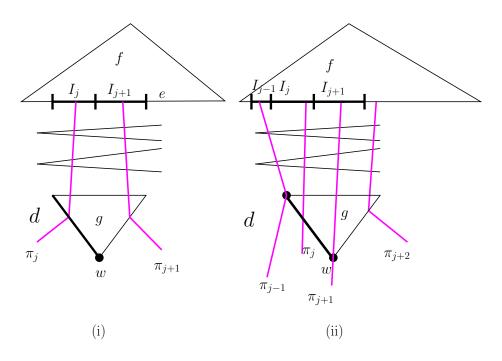
Alle I(v, E) berechnen!

- Wie viele?
- Was machen wir mit dem Inneren der Dreiecke?
- Lem. 1.44: Kante e, O(n) Intervalle $I(v,\epsilon)$
- Zählargument: Klassisch!!!

Lem. 1.44: O(n) Intervalle $I(v, \mathbf{E})$

Lem. 1.44: O(n) Intervalle $I(v, \mathbf{E})$

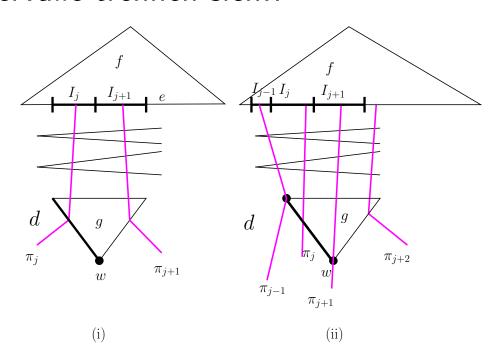
Benachbarte Intervalle trennen sich!!



• Kante d kann max zweimal als Trenner vorkommen!!

Lem. 1.44: O(n) Intervalle $I(v, \mathsf{E})$

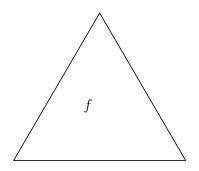
Benachbarte Intervalle trennen sich!!



- Kante d kann max zweimal als Trenner vorkommen!!
- Wegen Schnitteigenschaft!! Ausklappen ohne Überlappungen!

Annahme: Intervalle I(v, E) berechnet!

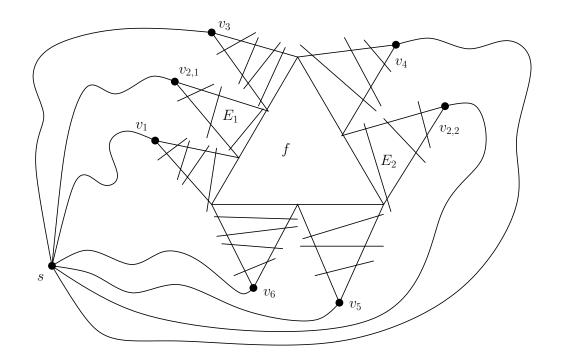
Annahme: Intervalle I(v, E) berechnet! Situation für jedes Dreieck!



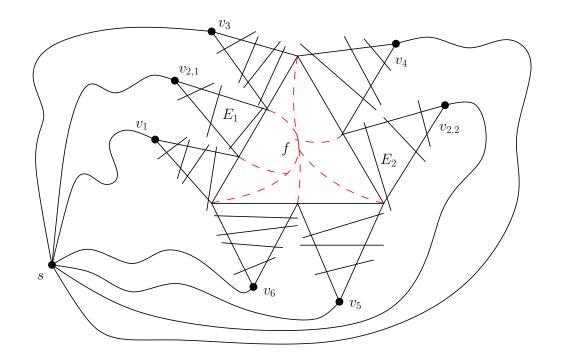
Annahme: Intervalle $I(v, \mathsf{E})$ berechnet! Situation für jedes Dreieck! Mehrere Kantenfolgen!!



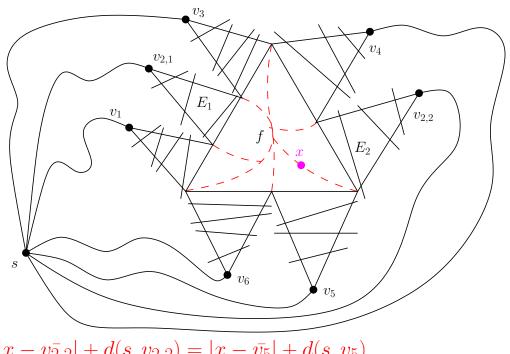
Annahme: Intervalle $I(v, \mathsf{E})$ berechnet! Situation für jedes Dreieck! Mehrere Kantenfolgen!!



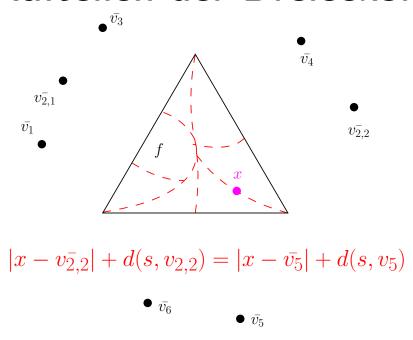
Annahme: Intervalle $I(v, \mathsf{E})$ berechnet! Situation für jedes Dreieck! Mehrere Kantenfolgen!!



Annahme: Intervalle I(v, E) berechnet! Situation für jedes Dreieck! Mehrere Kantenfolgen!!

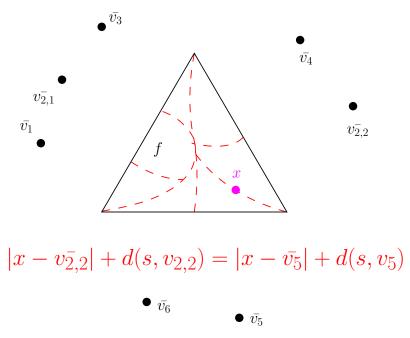


$$|x - v_{\overline{2},2}| + d(s, v_{2,2}) = |x - \overline{v_5}| + d(s, v_5)$$

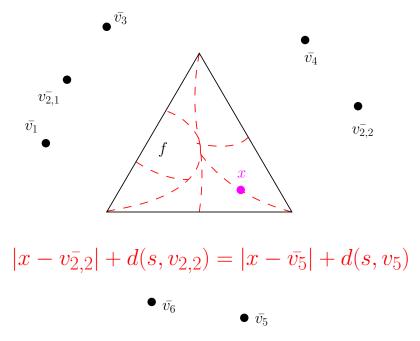


• Gewichte: $d(s, v_i)$,

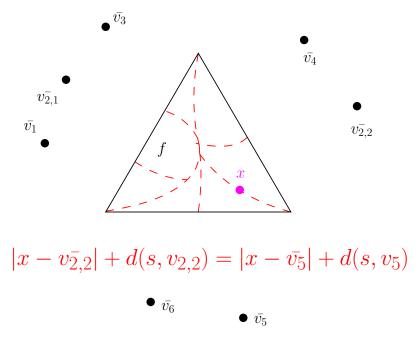
Offline Bewegungsplanung



ullet Gewichte: $d(s,v_i)$, Regionen bezüglich Orte $ar{v_i}$



- ullet Gewichte: $d(s,v_i)$, Regionen bezüglich Orte $ar{v_i}$
- ullet Voronoi Diagramm mit additiven Gewichten $d(s,v_i)$ voroAdd.html



- ullet Gewichte: $d(s,v_i)$, Regionen bezüglich Orte $ar{v_i}$
- Voronoi Diagramm mit additiven Gewichten $d(s, v_i)$ voroAdd.html
- Lokalisationsmöglichkeit! (Separators/Seidel)

ullet Input: Triang. Polyder P, n Ecken, s

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t\in f$

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:
 - Berechne Intervalle $I(v, \mathsf{E})$,

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t\in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD,

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t\in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$
 - Lokalisationstechnik! (Separators/Seidel),

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$
 - Lokalisationstechnik! (Separators/Seidel), $O(n^2)$

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t\in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$
 - Lokalisationstechnik! (Separators/Seidel), $O(n^2)$
- Query:

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$
 - Lokalisationstechnik! (Separators/Seidel), $O(n^2)$
- Query:
 - Voronoi Region von t in VD(f)

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$
 - Lokalisationstechnik! (Separators/Seidel), $O(n^2)$
- Query:
 - Voronoi Region von t in VD(f) $O(\log n)$
 - Kürzesten Weg aus $I(v,\mathsf{E})$: Über E und in v abgesp. Kürz. Weg zu $s,\,k$ Segmente,

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$
 - Lokalisationstechnik! (Separators/Seidel), $O(n^2)$
- Query:
 - Voronoi Region von t in VD(f) $O(\log n)$
 - Kürzesten Weg aus $I(v, \mathsf{E})$: Uber E und in v abgesp. Kürz. Weg zu s, k Segmente, O(k)

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$
 - Lokalisationstechnik! (Separators/Seidel), $O(n^2)$
- Query:
 - Voronoi Region von t in VD(f) $O(\log n)$
 - Kürzesten Weg aus I(v, E): Über E und in v abgesp. Kürz. Weg zu s, k Segmente, O(k)
 - Nur Länge,

- ullet Input: Triang. Polyder P, n Ecken, s
- ullet Output: Kürzester Weg für beliebigen Anfragepunkt $t \in f$
- Preprocessing:
 - Berechne Intervalle I(v, E), $O(n^2 \log n)$
 - Für alle f add. gew. VD, $O(n^2 \log n)$
 - Lokalisationstechnik! (Separators/Seidel), $O(n^2)$
- Query:
 - Voronoi Region von t in VD(f) $O(\log n)$
 - Kürzesten Weg aus I(v, E): Über E und in v abgesp. Kürz. Weg zu s, k Segmente, O(k)
 - Nur Länge, O(1)

Ergebnis: Theorem 1.45

Ergebnis: Theorem 1.45

Sei s auf P fest, gegeben b auf P. Die Entfernung bzw. die Kürzeste von s nach b auf P läßt sich nach Vorbereitungszeit $O(n^2 \log n)$ mit Platz $O(n^2)$ in Zeit $O(\log n)$ bzw. $O(\log n + k)$ berechnen.

Ergebnis: Theorem 1.45

Sei s auf P fest, gegeben b auf P. Die Entfernung bzw. die Kürzeste von s nach b auf P läßt sich nach Vorbereitungszeit $O(n^2 \log n)$ mit Platz $O(n^2)$ in Zeit $O(\log n)$ bzw. $O(\log n + k)$ berechnen.

(Mount, Mitchell, Papdimitriou, 1986)

Berechnung aller $I(v, \mathbf{E})$

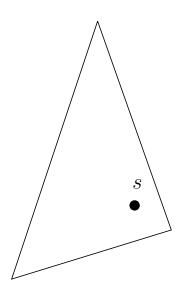
Berechnung aller $I(v, \mathbf{E})$

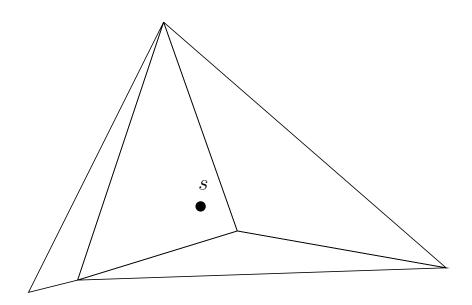
Continous Dijkstra: Sukzessive (Teil)Intervalle festlegen!

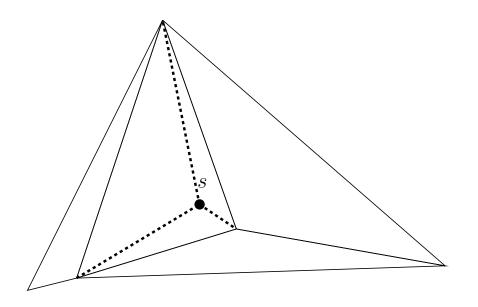
Continous Dijkstra: Sukzessive (Teil)Intervalle festlegen! Garantiepunkt s_i auf dem Intervall, nächster Punkt zu s.

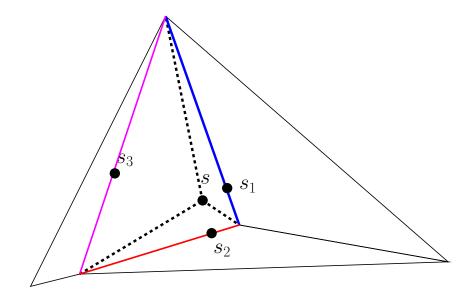
Berechnung aller $I(v, \mathbf{E})$

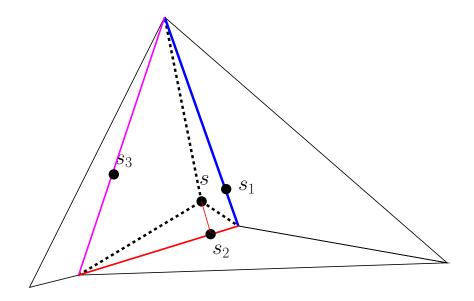
Continous Dijkstra: Sukzessive (Teil)Intervalle festlegen! Garantiepunkt s_i auf dem Intervall, nächster Punkt zu s. Kürzeste Wege zu Knoten merken!

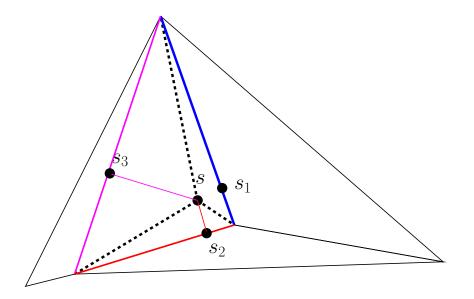


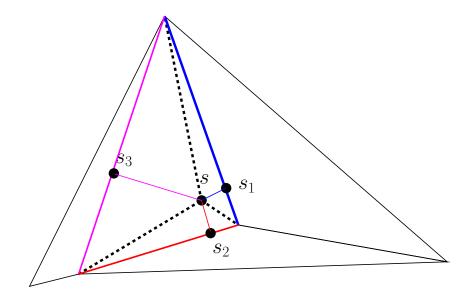


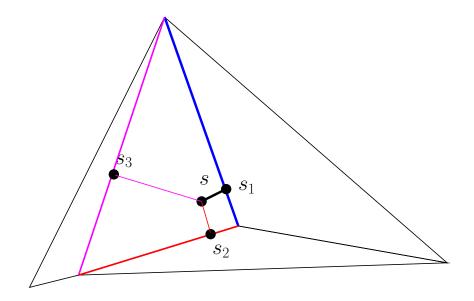


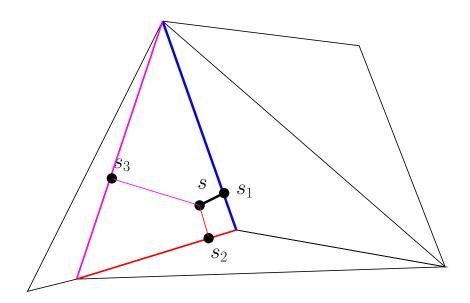


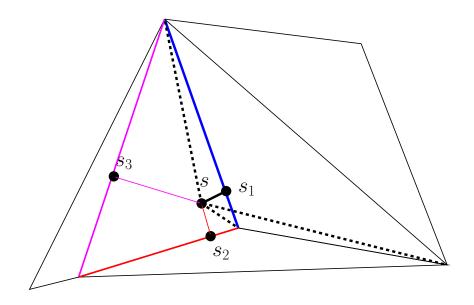


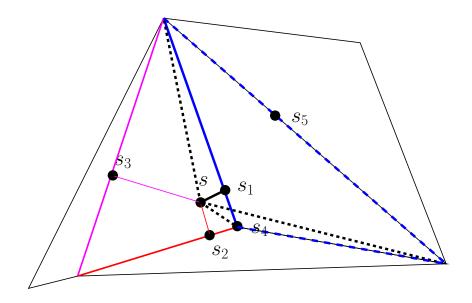


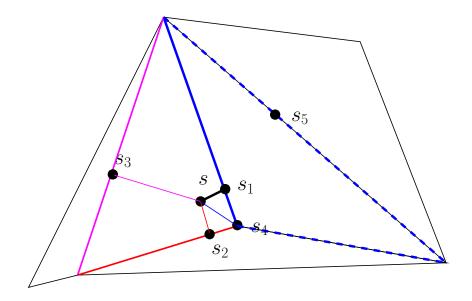


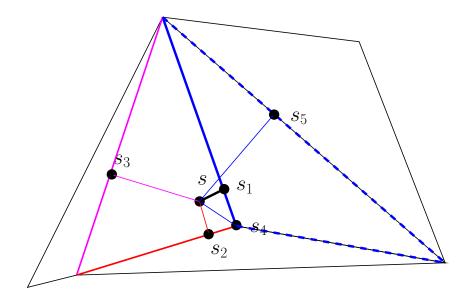


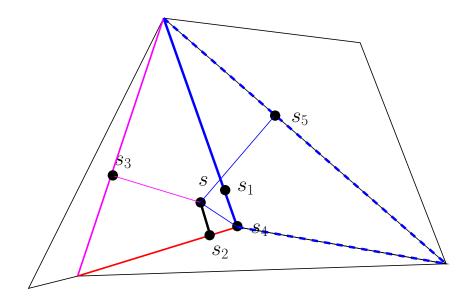


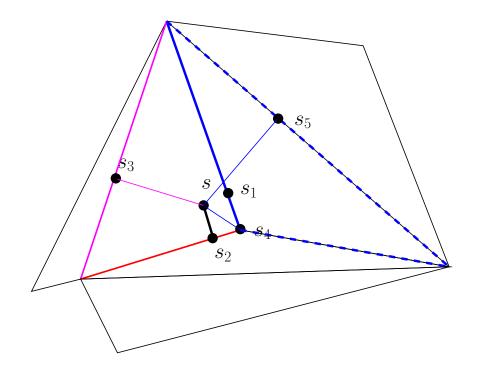


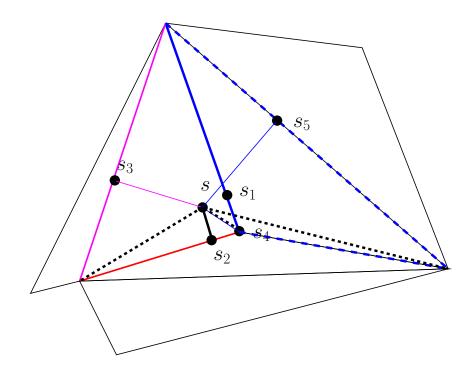


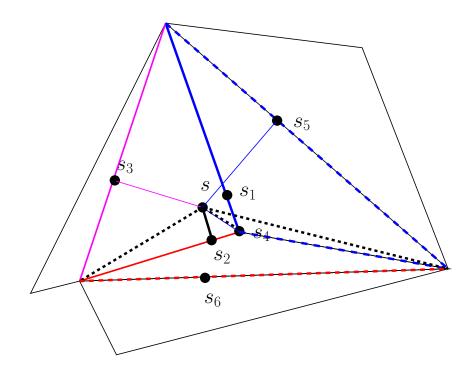


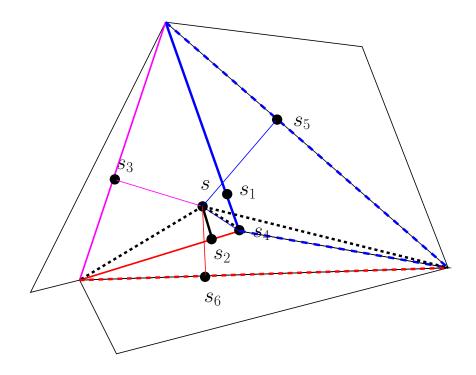


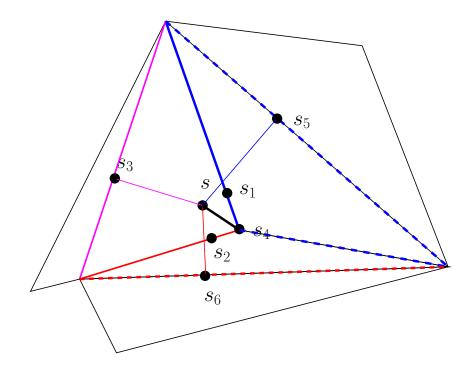


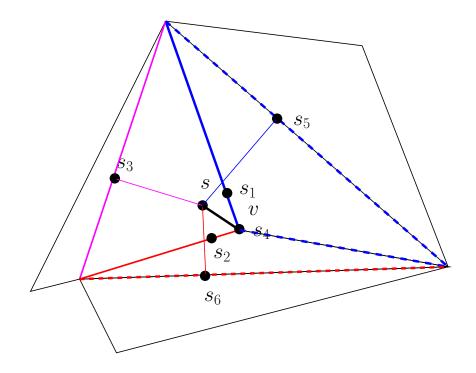


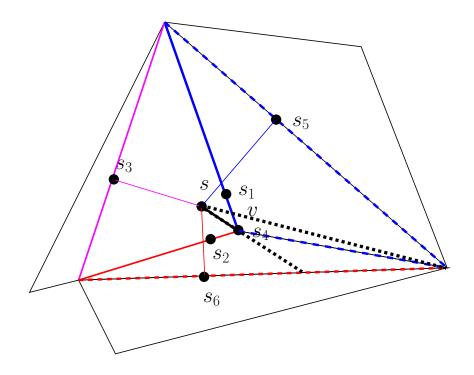


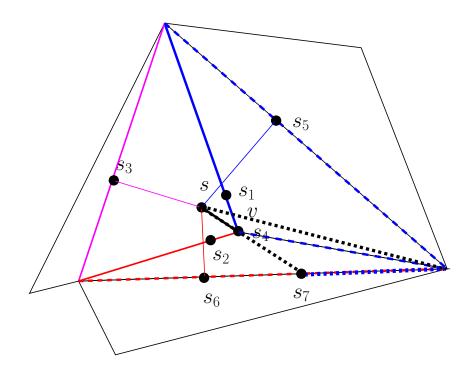


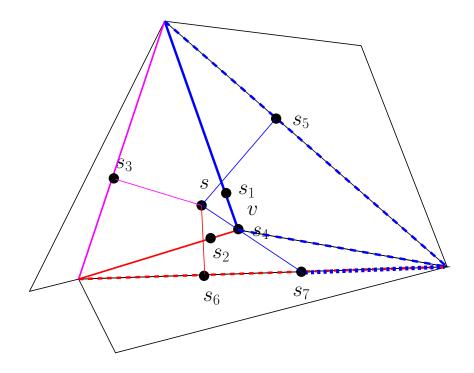


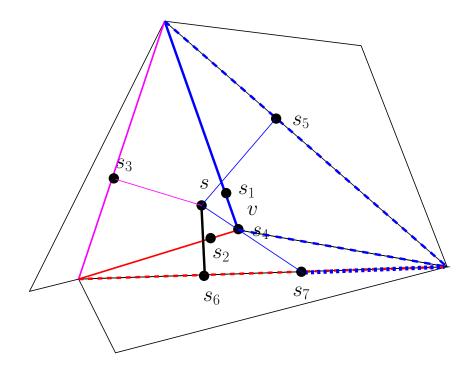












• DS:

• DS:

- Priority Queue W: Intervalle nach s_i -Abstände.
- Intervalllisten auf den Kanten in balancierten Baum vorhalten.

• DS:

- Priority Queue W: Intervalle nach s_i -Abstände.
- Intervalllisten auf den Kanten in balancierten Baum vorhalten.

• Iterationsschritt:

• DS:

- Priority Queue W: Intervalle nach s_i -Abstände.
- Intervalllisten auf den Kanten in balancierten Baum vorhalten.

Iterationsschritt:

- Wähle Intervall I(v, E) mit kürzestem Abstand.

• DS:

- Priority Queue W: Intervalle nach s_i -Abstände.
- Intervalllisten auf den Kanten in balancierten Baum vorhalten.

• Iterationsschritt:

– Wähle Intervall $I(v, \mathsf{E})$ mit kürzestem Abstand. $d(s,v) + |\bar{v} - s_i|$ ist am geringsten!

• DS:

- Priority Queue W: Intervalle nach s_i -Abstände.
- Intervalllisten auf den Kanten in balancierten Baum vorhalten.

• Iterationsschritt:

– Wähle Intervall $I(v, \mathsf{E})$ mit kürzestem Abstand. $d(s,v)+|\bar{v}-s_i|$ ist am geringsten! Wird stets Intervall bleiben! (Eventuell später gekürzt).

• DS:

- Priority Queue W: Intervalle nach s_i -Abstände.
- Intervalllisten auf den Kanten in balancierten Baum vorhalten.

• Iterationsschritt:

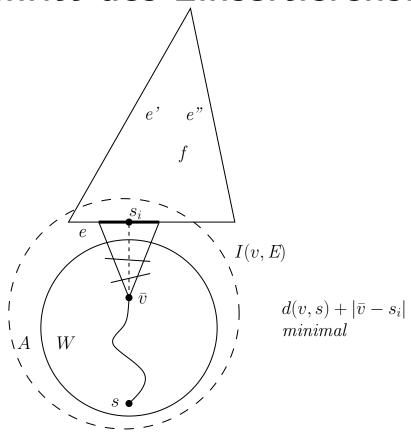
- Wähle Intervall $I(v,\mathsf{E})$ mit kürzestem Abstand. $d(s,v)+|\bar{v}-s_i|$ ist am geringsten! Wird stets Intervall bleiben! (Eventuell später gekürzt).
- Führe dieses Intervall auf die Kanten des Dreiecks fort, auf dem s_i lag und das jenseits der Folge E liegt.

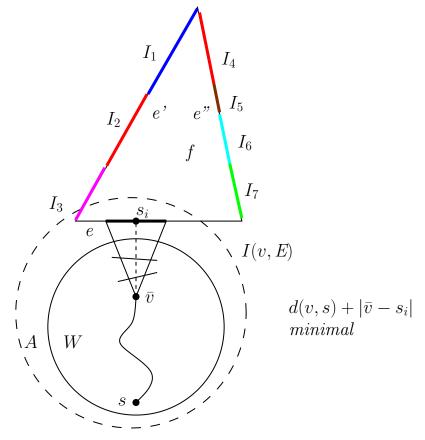
• DS:

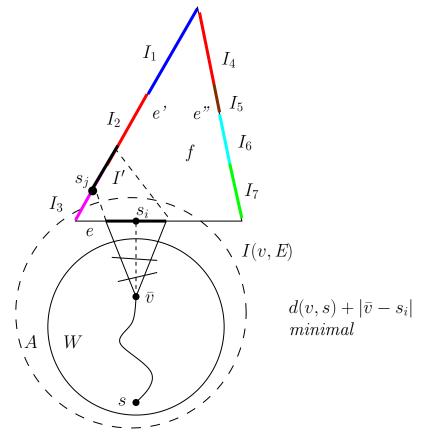
- Priority Queue W: Intervalle nach s_i -Abstände.
- Intervalllisten auf den Kanten in balancierten Baum vorhalten.

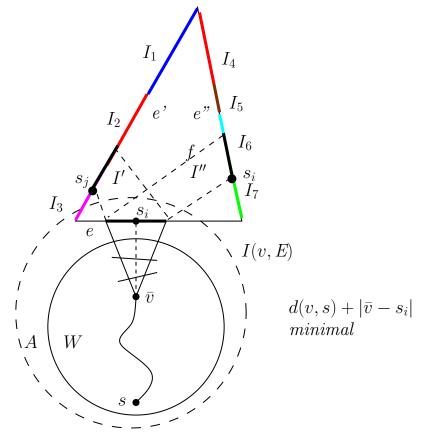
• Iterationsschritt:

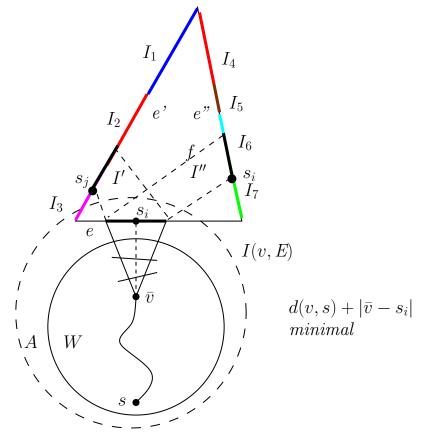
- Wähle Intervall $I(v, \mathsf{E})$ mit kürzestem Abstand. $d(s,v)+|\bar{v}-s_i|$ ist am geringsten! Wird stets Intervall bleiben! (Eventuell später gekürzt).
- Führe dieses Intervall auf die Kanten des Dreiecks fort, auf dem s_i lag und das jenseits der Folge E liegt.
- Sortiere zwei neue Intervalle in die Liste der Intervalle der beiden Kanten ein. Bestimme jeweilige s_j und füge in W ein.

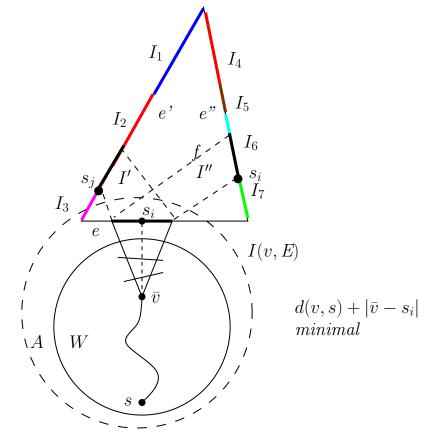




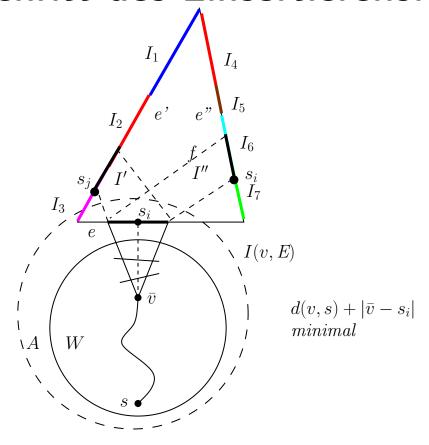








Einsortieren in Baum der Intervalle!



Einsortieren in Baum der Intervalle! $O(\log n)!$