
Convex Polytope (Chapter 5.1 and 5.2)

A convex polytope is a convex hull of finite points in Rd

• bounded convex polyhedron

Central Geometric Duality D0

For a point a ∈ Rd \ {0}, it assigns the hyperplane

D0(a) = {x ∈ Rd | 〈a, x〉 = 1},

and for a hyperplane h not passing through the origin, where h = {x ∈ Rd |
〈a, x〉 = 1}, it assisns the points D0(h) = a ∈ Rd \ {0}.
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An interpretation of duality through Rd+1

• “Primal” Rd: the hyperplane π = {x ∈ Rd+1 | xd+1 = 1}

• “dual” Rd: the hyperplane ρ = {x ∈ Rd+1 | xd+1 = −1}

• A point a ∈ π

– construct the hyperplane in Rd+1 perpendicular to 0a and containing 0

– intersect the hyperplane with ρ

k-flat is a hyperplane in (k + 1) dimensions.

• 0-flat is a point, 1-flat is a line, 2-flat is a plane, and so on.

• The dual of a k-flat is a (d− k − 1)-flat.
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Half-space

For a hyperplane h not containing the origin, let h− stand for the closed half-

space bounded by h and containing the origin, while h+ denotes the other

closed half-space bounded by h. That is, if h = {x ∈ Rd | 〈a, x〉 = 1}, then

h− = {x ∈ Rd | 〈a, x〉 ≤ 1} and h+ = {x ∈ Rd | 〈a, x〉 ≥ 1}.

Duality preserves incidences

For a point p ∈ Rd \ 0 and a hyperplane h not containing the origin,

• p ∈ h if and only if D0(h) ∈ D0(p).

• p ∈ h− if and only if D0(h) ∈ D0(p)−.

• p ∈ h+ if and only if D0(h) ∈ D0(p)+.

Dual set (Polar set)

For a set X ⊆ Rd, the set dual to X , denoted by X∗, is defined as follows:

X∗ = {y ∈ Rd | 〈x, y〉 ≤ 1 for all x ∈ X}.

Illustration for the dual set X∗

• Geometrically, X∗ is the intersection of all half-spaces of the form D0(x)−

with x ∈ X .

• In other words, X∗ consists of the origin plus all points y such that X ⊆
D0(y)−.

• For example, if X is the quadrilateral a1a2a3a4 shown above, the X∗ is

the quadrilateral v1v2v3v4.

• X∗ is convex and closed and contains the origin.

• (X∗)∗ is the convex hull of X ∪ {0}
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Famous convex polytopes in R3

Tetrahedron

four triangles

6 edges

4 vertices

Octahedron

8 triangles

12 edges

6 vertices

Dodecahedron

12 pentagon

30 edges

20 vertices



Two Types of Convex Polytopes

H-polyhedron/polytope

An H-polyhedron is an intersection of finitely many closed half-spaces in Rd.

An H-polytope if an bounded H-polyhedron.

V -polytope

An V -polytope is the convex hull of a finite point set in Rd

Theorem

Each V -polytope is an H-polytope, and each H-polytope is a V -polytope.

Mathematically Equivalence, Computational Difference

• Whether a convex polytope is given as a convex hull of a finite point set

or as an intersection of half-spaces

• Given a set of n points specifying a V -polytope, how to find its represen-

tationsa as an H-polytope?

• The number of required half-spaces may be astronomically larger than the

number n of points

Another Illustration

• Consider the maximization of a given linear function over a given polytope.

• For V -polytopes, it suffices to substitute all points of V into the given

linear function and select the maximum of the resulting values

• For H-polytopes, it is equivalent to solving the problem of linear program-

ming.

Dimension of a convex polyhedron P

• Dimension of its affine hull

• Smallest dimension of an Euclidean space containing a congruent copy of

P



Cubes

• The d-dimensional cube as a point set of the Cartesian Product [−1, 1]d

• As a V -polytope, the d-dimentional cube is the convex hull of the set

{−1, 1}d (2d points).

• As a H-polytope, it is described by the inequalities −1 ≤ xi ≤ 1, i =

1, 2, . . . , d, i.e., by the intersection of 2d half-spaces

• 2d points vs. 2d half-spaces

• The unit-ball of the maximium norm ||x||∞ = maxi |xi|

d = 1 d = 2 d = 3

Crosspolytope

• V -polytope: Convex hull of the “coordinates cross,” i.e., the convex hulll

of e1, −e1, e2, −e2, . . ., ed, and −ed, where e1, . . . , ed are vectors of the

stanard orthonormal basis. For d = 2, e1 = (1, 0) and e2 = (0, 1).

• H-polytope: Intersection of 2d half-spaces of the form 〈σ,≤〉1, where σ

ranges over all vectors in {−1, 1}d.

• 2d points vs. 2d half-spaces

• Unit ball of l1-norm ||x||1 =
∑d

i=1 |xi|.

d = 1 d = 2 d = 3



Simplex

A simplex is the convex hull of an affinely independent point set in some Rd

• A d-dimensional simplex in Rd can also be an intersection of d+1 half-spaces.

• The polytopes with smallest possible number of vertices (for a given dimen-

sion) are simplices.

d = 1 d = 2 d = 3d = 0

A regular d-dimensional simplex in Rd is the convex hull of d + 1 points with

all pairs of points having equal distances.

• Do not have a very nice representation in Rd

• Simplest representation lives one dimension higher

• The convex hull of the d+1 vectors e1, . . . , ed+1 of the standard orthonormal

basis in Rd+1 is a d-dimensional regular simplex with side length
√

2.
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Proof of equivalence of H-polytope and V -polytope

=> (Let P be an H-polytope)

• Assume d ≥ 2 and let Γ be a finite collection of closed half-spaces in Rd

such that P =
⋂

Γ is nonempty and bounded (By the induction, (d− 1) is

correct)

• For each γ ∈ Γ, let Fγ = P ∩ ∂γ be the intersection of P with bounding

hyperplane of γ.

• Each nonempty Fγ is an H-polytope of dimension of at most (d − 1), and

it is the convex hull of a finite set Vγ ⊂ Fγ (by the inductive hypothesis)

• Claim P = conv(V ), where V =
⋃
γ∈Γ Vγ

– Let x ∈ P and let l be a line passing through x.

– The intersection l ∩ P is a segement, so let y and z be its endpoints

– There are α, β ∈ Γ such that y ∈ Fα and z ∈ Fβ
– We have y ∈ conv(Vα) and z ∈ conv(Vβ).

– x ∈ conv(Vα
⋃
Vβ) ⊆ conv(V )
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(<=) (Let P be a V -polytope)

• Let P = conv(V ) with V finite and assume 0 is an interior point of P

• Consider the dual body P ∗ =
⋂
v∈V D0(v)−

• Since P ∗ is an H-polytope, P ∗ is a V -polytope (what we just prove)

– P ∗ is the convex hull of a finite point set U

• Since P = (P ∗)∗, P is the intersection of finitely many half-spaces

– P =
⋂
u∈U D0(u)−


