Lattices and Minkowsky's Theorem

Integer Lattices

A lattice point in the integer lattice \mathbb{Z}^{d} is a point in \mathbb{R}^{d} with integer coordinates.

Minkowski's Theorem

Let $C \subseteq \mathbb{R}^{d}$ be symetric around the origin (i.e., $C=-C$), convex, and bounded, and suppose that $\operatorname{vol}(C)>2^{d}$.
Then C contains at least one lattice point different from 0 .

Claim

Let C^{\prime} be $\frac{1}{2} C$, i.e., $C^{\prime}=\left\{\left.\frac{1}{2} x \right\rvert\, x \in C\right\}$.
There exists a nonzero integer vector $v \in \mathbb{Z}^{d} \backslash\{0\}$ such that $C^{\prime} \cap\left(C^{\prime}+v\right) \neq \emptyset$; i.e., C^{\prime} and a translate of C^{\prime} by an intger vector intersect.

Sketch of proof

- By contradiction; suppose the claim is false.
- Let R be a large integer number.
- Consider the family \mathcal{C} of translates of C^{\prime} by the integer vectors in the cube $[-R, R]^{d}$ (See figure in the next page):

$$
\mathcal{C}=\left\{C^{\prime}+v \mid v \in[-R, R]^{d} \cap \mathbb{Z}^{d}\right\}
$$

- By assumption, each such translate is disjoint from C^{\prime}, and every two of these translates are disjoint as well.
- All translates are contained in the enlarged cube $K=[-R-D, R+D]^{d}$, where D denotes the diameter of C^{\prime} :

$$
\begin{gathered}
\operatorname{vol}(K)=(2 R+2 D)^{d} \geq|\mathcal{C}| \operatorname{vol}\left(C^{\prime}\right)=(2 R+1)^{d} \operatorname{vol}\left(C^{\prime}\right), \text { and } \\
\rightarrow \operatorname{vol}\left(C^{\prime}\right) \leq\left(1+\frac{2 D-1}{2 R+1}\right)^{d}
\end{gathered}
$$

- The right hand side is arbitrarily close to 1 for sufficiently large R
- Since $\operatorname{vol}\left(C^{\prime}\right) 2^{-d} \operatorname{vol}(C)>1$, the lefthand side, is a fixed number exceeding 1 by a certain amount independent of R.
- There exists a contradiction.

Proof of Minkowski Theorem

- Fix a vector $v \in \mathbb{Z}^{d}$ as in the Claim, and choose a point $x \in C^{\prime} \cap\left(C^{\prime}+v\right)$.
- $x-v \in C^{\prime}$.
- Since C^{\prime} is symetric, $v-x \in C^{\prime}$.
- Since C^{\prime} is convex, the midpoint of the segment between x and $v-x$ lies in C^{\prime}, i.e.,

$$
\frac{1}{2} x+\frac{1}{2}(v-x)=\frac{1}{2} v \in C^{\prime}
$$

- To conclude,

$$
v \in C .
$$

Example (A regular forest)
Let K be a circle of diamter 26 centered at the origin. Threes of diameter 0.16 grow at each lattice point within K except for the origin. You stand at the origin. Prove that you cannot see outside this miniforest.

Sktech of Proof

- Assume the contrary that one could see outside along some line l passing through the origin.
- The strip S of width 0.16 with l as the middle line contains no lattice point in K except for the origin.
- In other words, the sysmetric convex set $C=K \cap S$ contains no lattice points bu the origin.
- Since $\operatorname{vol}(C)>4$, it contradicts Minkowski's theorem.

Proposition (Approximating an irrational number by a fraction)
Let $\alpha \in(0,1)$ be a real number and N be a natural number. Then there exists a pair of natural numbers m, n such that $n \leq N$ and

$$
\left|\alpha-\frac{m}{n}\right|<\frac{1}{n N} .
$$

This proposition implies that there are infinitely many pairs m, n such that $\alpha-\frac{m}{n}<\frac{1}{n^{2}}$, which is a basic and well-known result in elemantary numner theory.

Proof of the Proposition

- Consider the set

$$
C=\left\{(x, y) \in \mathbb{R}^{2}\left|-N-\frac{1}{2} \leq x \leq N+\frac{1}{2},|\alpha x-y|<\frac{1}{N}\right\}\right.
$$

- C is symmetric.
- $\operatorname{vol}(C)=(2 N+1) \frac{2}{N}>4$.
- Therefore, C contains some nonzero integer lattice point (n, m).
- By symmetry, assume $n>0$.
- By the definition of $C, n \leq N$, and $|\alpha n-m|<\frac{1}{N}$. In other words,

$$
\left|\alpha-\frac{m}{n}\right|<\frac{1}{n N} .
$$

General Lattices

Let $z_{1}, z_{2}, \ldots, z_{d}$ be a d-tuple of linearly independent vectors in \mathbb{R}^{d}.
The lattice with basis $\left\{z_{1}, z_{2}, \ldots, z_{d}\right\}$ is the set of all linear combinations of the z_{i} with integer coefficients:

$$
\Lambda=\Lambda\left(z_{1}, z_{2}, \ldots, z_{d}\right)=\left\{i_{1} z_{1}+i_{2} z_{2}+\cdots+i_{d} z_{d} \mid\left(i_{1}, i_{2}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}\right\}
$$

Remark

A general lattice has in general many different bases.
For example, the sets $\{(1,0),(0,1)\}$ and $\{(1,0),(3,1)\}$ are both bases of the "standard" lattice \mathbb{Z}^{2}.

Determinant of a lattice

Form a $d \times d$ matrix Z with the vector z_{1}, \ldots, z_{d} as columns.
The determinant of the lattice $\Lambda=\Lambda\left(z_{1}, z_{2}, \ldots, z_{d}\right)$, denoted by $\operatorname{det} \Lambda$ is $|\operatorname{det} Z|$.
Geometrically, $\operatorname{det} \Lambda$ is the volume of the parallelepiped $\left\{\alpha_{1} z_{1}+\alpha_{2} z_{2}+\cdots+\right.$ $\left.\alpha_{d} z_{d} \mid \alpha_{1}, \ldots, \alpha_{d} \in[0,1]\right\}$.

Remark

- $\operatorname{det} \Lambda$ is a property of Λ, and it does not depend on the choice of basis of Λ.
- If Z is the matrix of some basis of Λ, the matrix of every basis of Λ has the form $B U$, where U is an integer matrix with determinant ± 1

Minkowski's theorem for general lattices

Let Λ be a lattice in \mathbb{R}^{d}, and let $C \subseteq \mathbb{R}^{d}$ be a symmetric convex set with $\operatorname{vol}(C)>2^{d} \operatorname{det} \Lambda$. Then C contains a point of Λ different from 0 .

Sketch of Proof

- Let $\left\{z_{1}, \ldots, z_{d}\right\}$ be a basis of Λ.
- Define a linear mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)=x_{1} z_{1}+$ $x_{2} z_{2}+\cdots+x_{d} z_{d}$.
- f is a bijection and $\Lambda=f\left(\mathbb{Z}^{d}\right)$.
- For any convex set X,

$$
\operatorname{vol}(f(X))=\operatorname{det}(\Lambda) \operatorname{vol}(X)
$$

- If X is a cube, this trivially holds.
- A convex set can be approximated by a disjoint union of sufficiently small cubes with arbitrary precision.
- Let C^{\prime} be $f^{-1}(C)$.
- C^{\prime} is a symmetric convex set with $\operatorname{vol}\left(C^{\prime}\right)=\operatorname{vol}(C) / \operatorname{det} \Lambda>2^{d}$.
- By Minkowski's theorem, C^{\prime} contains a integer lattice v in \mathbb{Z}^{d}.
- C contains $f(v)$, and $f(v)$ is a lattice point of Λ.

A seemingly more general definition of a lattice

What if we consider integer linear combinations of more than d vectors in \mathbb{R}^{d} ? If we take $d=1$ and the vectors $v_{1}=(1)$ and $v_{2}=\sqrt{2}$, then the integer linear combination $i_{1} v_{1}+i_{2} v_{2}$ are dense in the real line.
But it is not called a lattice.

Definition

A discrete subgroup of \mathbb{R}^{d} is a set Λ of \mathbb{R}^{d} such that whenever $x, y \in \Lambda$, then also $x-y \in \Lambda$ and such that the distance of any two distinct points of Λ is at least δ, for some fixed positive real number $\delta>0$.

Remark

- If $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{R}^{d}$ are vectors with rational coordinates, the set Λ of all their integer linear combinations is a discrete subgroup of \mathbb{R}^{d}.
- Any discrete subgroup of \mathbb{R}^{d} whose linear span is all of \mathbb{R}^{d} is a general lattice. (The following theorem)

Lattice Basis Theorem

Let $\Lambda \subset \mathbb{R}^{d}$ be a discrete group of \mathbb{R}^{d} whose linear span is \mathbb{R}^{d}.
Then Λ has a basis: there exists d linearly independent vectors $z_{1}, z_{2}, \ldots, z_{d} \in \mathbb{R}^{d}$ such that $\Lambda=\Lambda\left(z_{1}, z_{2}, \ldots, z_{d}\right)$.

- Prove by induction
- Consider $i, 1 \leq i \leq d+1$, and assume linearly independent vectors $z_{1}, z_{2}, \ldots, z_{i-1}$ have already constructed:
- Let F_{i-1} denoetes the $(i-1)$-dimensional subspace spanned by $z_{1}, z_{2}, \ldots, z_{i-1}$.
- All points of Λ lying in F_{i-1} can be written as integer linear combinations of $z_{1}, z_{2}, \ldots, z_{i-1}$.
- If $i=d+1$, the statement of the theorem holds.
- So consider $i \leq d$ and construct z_{i}
- Since Λ generates \mathbb{R}^{d}, there exists a vector $w \in \Lambda$ not lying in the subspace F_{i-1}.
- Let P be i-dimensional parallelepiped determined by $z_{1}, z_{2}, \ldots, z_{i-1}$ and by w :

$$
P=\left\{\alpha_{1} z_{1}+\alpha_{2} z_{2}+\cdots+\alpha_{i-1} z_{i-1}+\alpha_{i} w \mid \alpha_{1}, \ldots, \alpha_{i} \in[0,1]\right\}
$$

- Among all the points of Λ lying in P but not in F_{i-1}, choose one nearest to F_{i-1} and call it z_{i}.
- If the points of $\Lambda \cap P$ are written in the from $\alpha_{1} z_{1}+\alpha_{2} z_{2}+\cdots+\alpha_{i-1} z_{i-1}+$ $\alpha_{i} w, z_{i}$ is the w with smallest α_{i}.
- Let F_{i} be the linear space of z_{1}, \ldots, z_{i}. Then, if a point $v \in \Lambda$ lies in F_{i}, v can be written as $\beta_{1} z_{1}+\beta_{2} z_{2}+\cdots+\beta_{i} z_{i}$ for some real numbers $\beta_{1}, \ldots, \beta_{i}$.
- We will prove that all β_{j}, for $1 \leq j \leq i$, are all integers, leading to the theorem
- Let γ_{j} be the fractional part of β_{j}, for $1 \leq j \leq i$, i.e., $\gamma_{j}=\beta_{j}-\left\lfloor\beta_{j}\right\rfloor$.
- Let v^{\prime} be $\gamma_{1} z_{1}+\gamma_{2} z_{2}+\cdots+\gamma_{i} z_{i}$.
- v^{\prime} must belong to Λ since v and v^{\prime} differ by an integer linear combination of vectors of Λ.
- Since $0 \leq \gamma_{j}<1, v^{\prime}$ lies in the parallelepiped P.
- We must have $\gamma_{i}=0$; otherwise, v^{\prime} would be nearer to F_{i-1} than z_{i}.
- Hence $v^{\prime} \in \Lambda \cap F_{i-1}$, and by the inductive hypothesis, we also get that all the other γ_{j} are 0 .
- So all the β_{j} are integers.

Remark

A general lattice can also be defined as a full-dimensional discrete subgroup of \mathbb{R}^{d}.

Applications

Two-Square Theorem

Each pime $p \equiv 1(\bmod 4)$ can be wriited as a sum of two squares:

$$
p=a^{2}+b^{2}, a, b \in \mathbb{Z}
$$

Definition

An integer a is called a quadratic residue modulo p if there exists an integer x such that

$$
x^{2} \equiv a(\bmod p) .
$$

Otherwise, q is a quadratic nonresidue modulo p.

Lemma

If p is a prime with $p \equiv 1(\bmod 4)$, then -1 is a quadratic residue modulo p.

- Let F be the field of residue classes modulo p, and let F^{*} be $F \backslash\{0\}$.
- $i^{2}=1$ has two solutions in F, namely, $i=1$ and $i=-1$.
- For any $i \neq \pm 1$, there exists exactly one $j \neq i$ with $i j=1$, namely, $j=i^{-1}$ is the inverse element in F.
- Therefore, all the elements of $F^{*} \backslash\{-1,1\}$ can be divided into pairs such that product of elements in each pair is 1 .
- $(p-1)!=1 \cdot 2 \cdots(p-1) \equiv-1(\bmod p)$.
- Suppose that contradiction that the equation $i^{2}=-1$ has no solution in F.
- All the elements in F^{*} can be divided into pairs such that the product of the elements in each pair is -1 .
- There are $(p-1) / 2$ pairs, which is an even number.
- Hence $(p-1)!\equiv(-1)^{(p-1) / 2}=1$, a contradiction.

Proof of Two-square theorem

- Choose a number q such that $q^{2} \equiv-1(\bmod p)$.
- Consider the lattice $\Lambda=\Lambda\left(z_{1}, z_{2}\right)$, where $z_{1}=(1, q)$ and $z_{2}=(0, p)$.
- $\operatorname{det} \Lambda=p$.
- Consider a disk $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<2 p\right\}$.
- The area of C is $2 \pi p>4 p=2^{2} \operatorname{det} \Lambda$.
- By Minkowski's theorem for general lattices, C contains a point $(a, b) \in$ $\Lambda \backslash\{0\}$.
- We have $0<a^{2}+b^{2}<2 p$.
- At the same time, $(a, b)=i z_{1}+j z_{2}$ for some $i, j \in \mathbb{Z}^{2}$, i.e., $a=i$, $b=i q+j p$.
- $a^{2}+b^{2}=i^{2}+(i q+j p)^{2}=i^{2}+i^{2} q^{2}+2 i q j p+j^{2} p^{2} \equiv i^{2}\left(1+q^{2}\right) \equiv 0(\bmod p)$.
- Therefore $a^{2}+b^{2}=p$.

