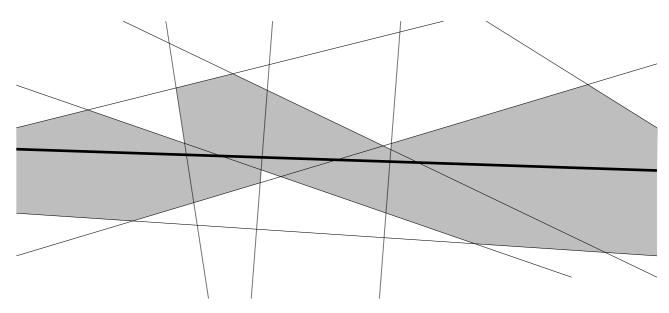
The Zone Theorem (Chapter 6.4)

Zone

Let H be a set of n hyperplane, and let g be a hyperplane that may or may not lie in H.

The **zone** of g is the set of the faces in the arrangement of H that can see g

- \bullet Imagine the hyperplanes of H are opaque
- A face F can see the hyperplane g if there are points $x \in F$ and $y \in g$ such that the open segment \overline{xy} is not intersected by any hyperplane of H
 - It does not matter which point $x \in F$ we choose.
 - Either all of them can see g or non can.



Zone Theorem

The number of faces in the zone of any hyperplane in an arrangement of n hyperplanes in \mathbb{R}^d is $O(n^{d-1})$, with the constant of proportionality depending on d.

Before the proof

- Assume $H \cup \{g\}$ to be in general position
- The zone has $O(n^{d-1})$ cells because each (d-1)-dimensional cell of the (d-1)-dimensional arrangement within g intersects only one d-dimensional cell of the zone
 - But it does not apply to the number of faces and vertices.

Proof of Zone Theorem

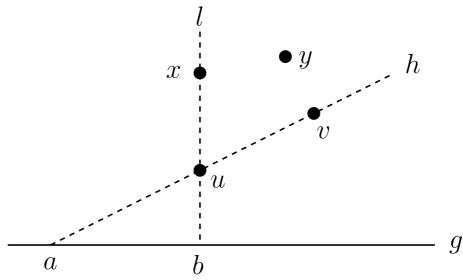
General Idea: Induction on the dimension d.

The case d = 2

- Let H be a set of n lines in the planes in general position
- \bullet Consider the zone of a line g
- \bullet Since a convex polygon has the same number of vertices and edges, it suffices to bound the total number of edges visible from the line g
- \bullet Imagine g drawn horizontally and count the number of visible edges lying above g
 - At most n visible edges intersect the line g since each line of H gives rise to at most one such edge
 - The other visible edges are disjoint from g
- Consider an edge \overline{uv} from g and visible from a point of g.
- Let $h \in H$ be the line containing \overline{uv} , and let a be the intersection of h with g

- Assume u is closer to a than v is.

- Let l be the second line defining the vertex u, and let b be the intersection of l with g.
- Call \overline{uv} a *right edge* of l if b lies to the right of a, and a *left edge* if b lies to the left of a.

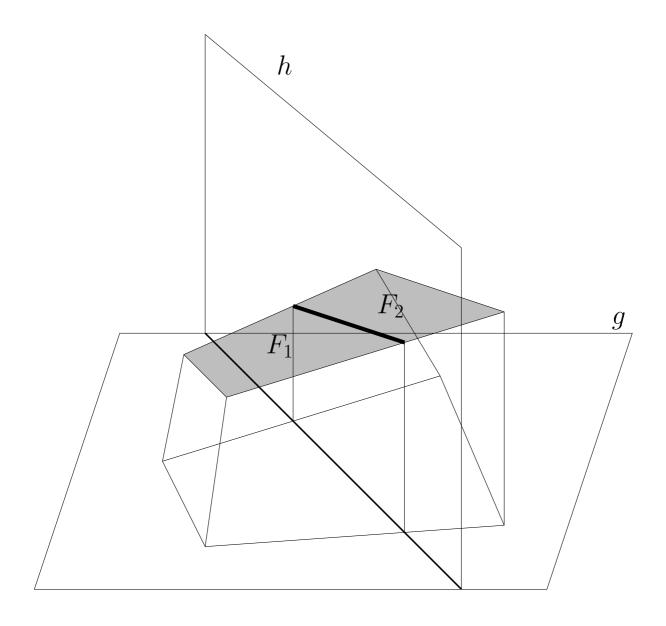


- Show that for each line l there exists at mos one right edge
 - If it were not the case, there would exist two edges, \overline{uv} and \overline{xy} , where u lies lower than x, which would both be the right edges of l
 - The edge \overline{xy} should see some point of the line g.
 - However, the part of g lying to the right of a is obscured by line h, and the part left of a is obscured by the line
 - There exists a contradiction
- The number of visible edges is O(n)
 - the number of right edges is at most n, so is the number of left edges
 - The visible edges lying below g are counted symmetrically.

The case for d > 2

- Make the inductive step from d-1 to d
 - Assume the total number of faces of a zone in \mathbb{R}^{d-1} to be $O(n^{d-2})$, and want to bound the total number of zone faces in \mathbb{R}^d
- Use an averaging argument
 - begin with the slightly simpler case of counting only the facets (i.e., (d-1)-faces) of the zone
- Let f(n) denote the maximum possible number of (d-1)-faces in the zone of an arrangement of n hyperplanes in \mathbb{R}^d .
- Let H be an arrangement and g be a base hyperplane such that f(n) is attained for them.
- Consider the following random experiment
 - Color a randomly chosen hyperplane $h \in H$ red and the other hyperplanes of H blue
 - Investigate the expected number of blue facets of the zone, where a facet is blue if it lies in a blue hyperplane.
- On one hand, since any facet has probability $\frac{n-1}{n}$ of becoming blue, the expcted number of blue facets is $\frac{n-1}{n}f(n)$.

- Bound the expected number of blue facets in different way
 - Consider the arrangement of blue hyperplanes
 - Its has at most f(n-1) blue facets in the zone by the inductive hypothesis
 - Add the red plane, and look by how much the number of blue facets in the zone can increase
- A new blue facets can arise by adding the red hyperplane only if the red hyperplane slice some existing blue facets F into two parts F_1 and F_2



- This operation increases the number of blue facets in the zone only if both F_1 and F_2 are visible from g.
 - In such a case, we look at the situation within the hyperplane h
- Claim $F \cap h$ are visible from $g \cap h$
 - Let C be a cell of the zone in the arrangement of the blue hyperplanes having F on the boundary
 - Exhibit a segment connecting $F \cap h$ to $g \cap h$ within C.
 - * If $x_1 \in F_1$ see a point $y_1 \in g$ and $x_2 \in F_2$ see a point $y_2 \in g$, then the whole interior of the tetrahedron $x_1x_2y_1y_2$ is contained in C
 - * The intersection of this tetrahedron with the hyperplane h contains a segment witnessing the visibility of $g \cap h$ from $F \cap h$.
- We can obtain the following inequality:

$$\frac{n-1}{n}f(n) \le f(n-1) + O(n^{d-2}).$$

- If we intersect all the blue hyperplanes and the hyperplane g with the red hyperplane h, we get a (d-1)-dimensional arrangement, in which $F \cap h$ is a facet of the zone of the (d-2)-dimensional hyperplane $g \cap h$.
- By the inductive hypothesis, this zone has $O(n^{d-2})$ facets.
- Hence adding h increases the number of blue facets of the zone by $O(n^{d-2})$.
- The previous considerations can be generalized to (d k)-faces, where $1 \le k \le d 2$:

$$\frac{n-k}{n}f_{d-k}(n) \le f_{d-k}(n-1) + O(n^{d-2}),$$

- where $f_j(n)$ denote the maximum possible number of *j*-faces in the zone for *n* hyperplanes in \mathbb{R}^d .
- Use the substitution $\phi(n) = \frac{f_{d-k}(n)}{n(n-1)\cdots(n-k-1)}$, and transform the recurrence into

$$\phi(n) \le \phi(n-1) + O(n^{d-k-2}).$$

• For k < d - 1, $\phi(n) = O(n^{d-k-1})$, and hence $f_{d-k}(n) = O(n^{d-1})$

- Still need to bound the case k = d 1
- The number of vertices of the zone is at most proportional to the number of the 2-faces of the zone
 - Every vertex is contained in some 3-face of the zone
 - Within each such 3-face, the number of vertices is at most 3 times the numer of 2-faces, because the 3-faces is a 3 dimensional convex polyhedron.
 - Since our arrangement is simple, each 2-face is contained in a bounded number of 3-faces
 - Therefore, the total number of vertices is at most proportional to $f_2(n) = O(n^{d-1})$
 - The analogous bound for edges follows immediately from the bound for vertices