
Rheinische Friedrich-Wilhelms-Universität Bonn

Mathematisch-Naturwissenschaftliche Fakultät

Theoretical Aspects of Intruder Search

MA-INF 1318 Manuscript Wintersemsester 2015/2016

Elmar Langetepe

Bonn, 19. October 2015

The manuscript will be successively extended during the lecture in the Wintersemester. Hints
and comments for improvements can be given to Elmar Langetepe by E-Mail

elmar.langetepe@informatik.uni-bonn.de. Thanks in advance!

32 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

2. If not all subtrees from 2↵1�2 to 20 exist, only ↵1�1 agents are required. But now the value
for n is small enough so that we can conclude. ↵1� 1 � blog2(23(n+1))c � log2(n+1)� 1
which gives the bound. This requires the measurement of 2

3(n+1) in comparison to ↵1�1
is left as an Exercise.

2

Exercise 14 Discuss the remaining case in the above proof. That is ↵2 � 1 < ↵1 and the two
cases depicted in the proof.

On the other hand, we show that blog2 nc agents are always su�cient.

Lemma 30 For every n � 1 and unit weights, blog2 nc agents are su�cient for a contiguous
search strategy.

Proof. We consider a tree T
r

with n vertices and µ(r) = cs(T). Now, we simplify this so that
it becomes a complete binary tree T 0

r

w.r.t. r with cs(T
r

) = cs(T 0
r

) by the following rules. The
rules can be applied successively, until none of them is applicable any more. The children/parent
relation in the tree is considered w.r.t. r.

1. For a node x and its d > 2 children x1, x2, . . . , x
d

ordered by cs(T
r

(x
i

)) � cs(T
r

(x
i+1))

remove all T
r

(x
i

) for i > 2.

2. For a node x with two children x1 and x2 and cs(T
r

(x1)) > cs(T
r

(x2)), remove T
r

(x2).

3. For a node x 6= r with only one child x1, remove x and connect x1 to the parent of x.

4. If there are more than two vertices left, and r has only one child x1, remove x1 and connect
the children of x1 to r.

First, the number of agents required for T 0
r

and T
r

are the same, because the computation of µ(r)
in T

r

makes use of exactly the same values. Note that the weights of the vertices are restricted
to one, therefore rule 2. is also correct by cs(T

r

(x1)) � cs(T
r

(x2)) + 1. Cancelling a vertex with
one child has no influence.

Second, we show that T 0
r

is a complete binary tree rooted in r. The first rule and the second
rule returns a tree that has internal nodes with at most 2 children. Rule three deletes internal
nodes with one child except for the root. Rule 4 makes the root have 2 or 0 children.

Thus, we have a binary tree whose internal nodes have degree excactly 2. Finally, we show that
the tree is complete. Let x be a node such that the subtree T 0

x

at x is not complete and there
is no other subtree in T 0

x

with this property. This means that the children x1 and x2 of x in T 0
r

define complete subtree T 0
x1

and T 0
x2

of di↵erent size. Thus, rule 2 can be applied which gives a
contradiction. 2

2.2.8 The prize of connectivity

In the previous section we analyzed the contiguous search number for trees and presented a
polynomial time algorithm for trees. The key argument was that recontamination does not help
for decreasing the search number. The contiguous search idea is mainly based on the fact that
searchers should not jump.

In general in the non-continuous setting this is in some sense allowed. More precisely, we extend
the rules defined in the beginning of Section 2.2.3. We allow that some of the agents can be
retracted from somewhere and placed somewhere else.

2.2. TREES 33

1. Place a team of p guards on a vertex.

2. Move a team of m guards along an edge.

3. Remove a team of r guards from a vertex.

We consider the unit-weighted case in this section. Note that the monotonicity proof in the
previous section also holds for non-contiguous strategies for trees and also for graphs. And it
also holds, if Rule 3. can be applied. This means that the progressive crusades of frontier k and
the search number k for graphs correspond in general in the same way. Recontamintion does
not help and optimal monotone strategies always exists.

More precisely, the connectivity relationship in the proof of Lemma 19 depicted in Figure 2.7
was only shown for trees. We obtained a progressive connected crusade. In general the use of a
progressive crusade is su�cient. Conversely, in the proof of Lemma 20 the three cases depicted
in Figure 2.10 can also be handled, if the progressive crusade is not connected.

Exercise 15 Consider the proof of Theorem 17. Argue, that with the same arguments, we can
show: For any unit-weighted graph G, with search number s(G), there is always a monotone
strategy with s(G) searchers.

So we can ask what is the prize for the connectivity. General strategies for the above rules
indeed have better search numbers as we will show here. We between the search number, s(G),
for general strategies and the contiguous search number, cs(G), for contiguous strategies. As
mentioned above for both measures we find optimal monotone strategies.

Let D
k

denote a tree with root r of degree three and three full binary trees, B
k�1, of depth k�1

connected to the r. We first show that cs(D
k

) = k + 1 holds.

Lemma 31 For the graph D
k

, we conclude cs(D
k

) = k + 1.

Proof. Let T1, T2 and T3 denote the copies of B
k�1 connected to the root and let e

i

denote the
edge that connects T

i

with the root r. For the contiguous search w.l.o.g. we can assume that the
edge e1 is cleared first at timestep i1 among the edges e1, e2 and e3. W.l.o.g. let i2 > i1 denote
the time step where for the first time a leaf l of T2 or T3 is reached. Assume w.l.o.g. f 2 T2.
At time step i2 � 1 the path P (r, x

k

) = r, x1, . . . , x
k�1 of length k � 1 from r to the neighbor

x
k�1 of f with k vertices has to be clean and for any x

i

2 P (r, f) there is a unique subtree in T2

di↵erent from f that is not fully decontaminated. For the root r there is a subtree in T3 that is
not fully decontaminated. So at least one searcher for any x

i

and for r is required which gives
k in total. One additional searcher now is required for cleaning f . This gives cs(D

k

) � k + 1.

On the other hand k + 1 searchers are su�cient, if we start at the root with k + 1 agents and
first clean a leaf and its neighbor. Recursively, and full binary subtree of depth l is cleaned from
the root with l + 1 searchers. 2

Now, we would like to relate this to the number s(D
k

). We consider D2k�1 with cs(D2k�1) = 2k.

Lemma 32 For D2k�1 we conclude s(D2k�1) k + 1.

Proof. For k = 1 the statement is trivial. So assume k > 1. We first place one agent at the
root r and successively clean the copies of B2k�2 by k agents. The last statement is shown by
induction. For k = 2 we place one agent at the root and a single agent starting at a leaf cleans
first the left subtree of r, is then moved to the leaf of the right subtree and cleans the second
subtree. Finally, all agents are placed at the root.

34 CHAPTER 2. DISCRETE SCENARIOS FOR CONTAMINATIONS

B

1

2k�2

v

k+1

2

v

k+1

1

B

2

2k�2

B

4

2k�2

B

3

2k�2

B

2(k+1)�2

Figure 2.17: The inductive step. Each subtree Bi

2k�2 can be cleaned by k agents. Placing an

additional searcher at vk+1
1 in the beginning, we first clean B1

2k�2 and B2
2k�2 successively by

k agents, move all k + 1 searchers to vk+1
2 and do the same for B3

2k�2 and B4
2k�2 successively.

Altogether, k + 1 searchers are su�cient for B2(k+1)�2.

Let us assume that the statement holds for k � 2. We can fully clean B2k�2 with k searchers
that are finally located at the root. The tree B2(k+1)�2 has four subtrees Bi

2k�2 for i = 1, 2, 3, 4
of depth 2k � 2as shown in Figure 2.17 that can be cleaned by induction hypothesis with k
agents. Let vk+1

1 be the ancestor of B1
2k�2 and B2

2k�2 and let vk+1
2 be the ancestor of B3

2k�2 and
B4

2k�2.

We place one additional agent at vk+1
1 and clean B1

2k�2 and B2
2k�2 successively by k agents. Then

all k + 1 agents move over the root toward vk+1
2 . Here we again leave the additional agent at

vk+1
2 and clean clean B3

2k�2 and B4
2k�2 successively by k agents. Thus k+1 agents are required.

By induction, B2k�2 can be cleaned by k searchers and for D2k�1 at most k + 1 searchers are
required. 2

Now, we have a fixed relationship between cs(G) and c(G) for G = D2k�1. We have s(D2k�1)
k + 1 and cs(D2k�1) = 2k.

Corollary 33 There exists a tree T so that cs(T) 2c(T)� 2 holds.

It was also shown by Barrière et al. 2012, that there is no tree T with ratio cs(T)
c(T) larger than 2.

More precisely,
cs(T)

c(T)
< 2 for all trees T .

The proof of this fact relies on the fact that in principle (up to retractions) the trees D
k

can be
considered to be the category of graphs that gives the worst-case ratio. If there is some time
left at the end of the semester we will prove this fact.

	Introduction
	Introductory examples
	Protecting parts of a polygonal area from a set of intruders
	Catching an evader in a grid world
	Enclosing a fire by a single circle
	Simulation and conjecture for a discrete spiral strategy

	Discrete Scenarios for Contaminations
	Graphs
	Polynomial time algorithm for special graphs
	NP-Completeness for graphs

	Trees
	Greedy approximation for a tree
	Exponential time algorithm for general trees
	Capture of an Intruder by moving agents
	Existance of monotone strategies
	Designing a monotone strategy for unit weights
	Optimal contiguous Intruder Search Strategy for unit weights
	Lower and upper bound for the contiguous search
	The prize of connectivity

	Discrete Cop and Robber game
	Classifications of graphs
	Simple examples and pitfalls
	Algorithmic approaches
	How many cops are required?

	Randomized variants
	Better approximations for trees by randomization
	Search numbers for random fire sources

