
Rheinische Friedrich-Wilhelms-Universität Bonn

Mathematisch-Naturwissenschaftliche Fakultät

Theoretical Aspects of Intruder Search

MA-INF 1318 Manuscript Wintersemsester 2015/2016

Elmar Langetepe

Bonn, 19. October 2015

The manuscript will be successively extended during the lecture in the Wintersemester. Hints
and comments for improvements can be given to Elmar Langetepe by E-Mail

elmar.langetepe@informatik.uni-bonn.de. Thanks in advance!

2.2. TREES 19

Lemma 15 If a vertex at depth d is burning in an optimal strategy for an instance of the
firefigther problem on trees, at least 1

2(d
2 + d) vertices are safe.

Proof. Let us assume that in T and for an optimal startegy, a vertex v at depth d is burning.
Then by Lemma 12 there is a protected vertex v

i

for any depth i = 1, . . . , d. Any tree T
vi should

contain at least d � i + 1 vertices. Otherwise it was better to choose a vertex along the path
from r to v in this step i. Thus

dX

i=1

(d� i+ 1) =
1

2
(d2 + d)

gives the bound. 2

Theorem 16 There is an O
⇣
2
p
2nn3/2

⌘
algorithm for the firefigther problem on a tree of size

n.

Proof. We show that we can run the algorithm of Theorem 13 for k 
p
2n. Suppose a vertex

of depth
p
2n is burning. Then by Lemma 15 n+

p
n/2 > n vertices are safe witch contradicts

the number n of vertices. This means that all vertices of depth
p
2n are safe in an optimal

strategy. In turn an optimal strategy makes use of less than
p
2n guards. Thus we set k 

p
2n

which gives the bound. 2

2.2.3 Capture of an Intruder by moving agents

Up to now we have considered stationary guards that check and block vertices of the graph or
tree. Many other variants are known from the literature. We discuss the following version. A set
of k agents starts at a homebase vertex b in a given tree T = (V,E) and there is some intruder
somewhere in T . The following problem definition and its solution goes back to Barrière et al. [].

The intention is to clear all edges of the tree. A contiguous search strategy can perform one of
the following two operations in one search time step:

1. Place a team of p guards on a vertex.

2. Move a team of r guards along an edge.

Additionally, the set of all cleared edges E
i

after step i has to be connected for any i.

In one time step a set of agents located at vertex u can move along an edge e = (v, u) from v
to u. There is an integer edge weight w(e) � 1 that says how many agents have to move along
e so that the intruder cannot cross the edge from u to v in this step. In this sense the agents
clear the link in this case. Intuitively, we can think of a large corridor and cleaning the corridor
from v to u requires at least w(e) agents. Furthermore, we have integer weights w(v) for the
vertices. Locally, a clear link e = (v, u) is preserved from recontamination, if either the vertices
v and u are guarded by w(v) and w(u) agents, respectively or all other edges incident to e are
also clear.

We assume that guarding a vertex is at least as hard as the maximum number of searchers
required for clearing an incident edge. Thus, we require w(v) � w(e) for any e = (v, u) 2 E. So
for any vertex v 2 V the weight could for example be given by w(v) := max

e=(u,v)2E w(e). An
example for a weighted tree is given in Figure 2.5.

In any time step (after a step of the search strategy) an edge e becomes recontaminated, if there
is a path from a contaminated edge e0 to edge e that is not blocked by agents on the vertices.

20 CHAPTER 2. DISCRETE SCENARIOS

e

1

e

2

e

4

e

3

e

6

e

5

v

1

v

2

v

3

v

4

v

5

v

6

v

7

35

3

7

5

5

1

4

1

5

7

7

4

Figure 2.5: A given weighted tree T = (V,E). A successful contiguous strategy can start with 10
agents at v1, also cs(T) = 10 holds. The size of the frontiers of X1 = {e4, e5, e6} and X2 = {e2}
is w(X1) = 7 and w(X2) = 10, respectively.

This means that a corresponding intruder has infinite speed for crossing an arbitrary number
of edges. We consider contiguous search strategies as described above and ask for the minimum
number of guards, cs(T), that su�ces to finally clear all links of the tree T .

A contiguous strategy for Figure 2.5 can start with 10 agents in vertex v7, clears edge e6. Leaves
6 agents at v5 and clear e5 with 4 agents. Moves back with 4 agents to v5 and clears edge e4
and edge e7 with 10 agents. Now, we leave 7 agents at v3, clear e2 by 3 agents, move back with
three agents and finally clear the last edge e3. Note that in the second last step, if we leave less
than 7 agents at v3, the edge e3 is contaminated and can recontaminate the full tree.

We would like to consider such monotone strategies. That is, a link that has already been
cleaned at some step t should not be contaminated (or visited by the intruder) later again. This
means that some of the agents will become stationary for a period of time in order to block
the movement of the intruder (or the recontamination of links). Additionally, we can compute
optimal monotone strategies e�ciently as we will see below. First, we show that monotone
strategies always exist.

2.2.4 Existance of monotone strategies

One main structural result is, that for a tree T for the computation of cs(T) it su�ces to consider
a montone strategy, where all agents start at the same homebase vertex b.

Theorem 17 For any weighted tree T there is a monotone contiguous search strategy with cs(T)
agents where all agents initially start at the same vertex b.

For the proof we require some notations. Let T = (V,E). For a subset X ✓ E we denote all
vertices that have a vertex incident to X and E \X as the boundary vertices �(X). If X

i

denotes
the set of clear links after time step i of a strategy then at least

w(X
i

) :=
X

v2�(Xi)

w(v) (2.1)

guards have been used. (Note that the contamination threatens not only the directly adjacent
links but also any fully non-protected path!)

In Figure 2.5 we have w({e4, e5, e6}) = 7 and w({e2}) = 10.

2.2. TREES 21

e

1

e

2

e

3

e

4

Figure 2.6: Crusades are only defined by subsets of edges of a
graph. For the given graph G there is a connected crusade
(;, {e1}, {e1, e2}, {e2}, {e2, e3}, {e1, e2, e3}, {e3, e4}, {e1, e3, e4}, {e1, e2, e3, e4}) and a pogres-
sive connected crusade is (;, {e1}, {e1, e2}, {e1, e2, e3}, {e1, e2, e3, e4}).

For G = (V,E) a sequence (X0, X1, . . . , Xm

) of subsets X
i

✓ E is called a crusade, if X0 = ;
and X

m

= E and |X
i

\ X
i�1|  1 for 1  i  m. The frontier of a crusade (X0, X1, . . . , Xm

)
is given by max1im

w(X
i

) as defined in Equation 2.1 above, which is the minimum number
of guards required for defending any X

i

. A crusade is progressive if X0 ✓ X1 ✓ · · · ✓ X
m

and
|X

i

\X
i�1| = 1 for 1  i  m. The crusade is connected, if X

i

is connected for 1  i  m.

Note that the definition of crusades holds for arbitrary graphs G. See Figure 2.6 for an example.

There will be a progressive connected crusade that will finally describe a strategy. In the very
beginning it is allowed to set agents on the vertices in many non-crusading steps. Then the
crusade starts to clean the links. But keep in mind that the above (connected) crusades are only
defined over sets of links up to now and do not directly represent a strategy.

Exercise 11 Define a crusade C = (X0, X1, . . . , Xm

) of a tree T that is not related to a strategy.

It is easy to see, that for cs(T)  k there should be a connected crusade of frontier  k in T . For
a given contiguous strategy S let C = (X0, X1, . . . , Xm

) denote the sequence of clear links after
each search step i. In any search step we can clear at most one additional edge, which means
|X

i

\X
i�1|  1 for 1  i  m. Since X

i

is connected (definition of contiguous) and is no further
destructed after search step i, we have w(X

i

)  k. Of course by construction we have X0 = ;
and X

m

= E. An example for Figure 2.5 is the above mentioned strategy and the connected
crusade C = (;, {e6}, {e6, e5}, {e6, e5, e4}, {e6, e5, e4, e1}, {e6, e5, e4, e1, e2}, {e6, e5, e4, e1, e2, e3})
We conclude:

Lemma 18 For cs(T)  k there is a connected crusade of frontier at most k.

Now we would like to show that there is also a progressive connected crusade in T of frontier at
most k. Note that the above connected crusade of Figure 2.5 is indeed progressive.

So starting from the above Lemma from all connected crusades C = (X0, X1, . . . , Xm

) of frontier
at most k we choose one that satisfies the following properties:

1.
P

m

i=0(w(Xi

) + 1) is minimum.

2. Amog all crusade satisfying condition 1. choose one with:
P

m

i=0 |Xi

| is minimum.

Obviously, one such crusade has to exist. So we only have to show that the crusade is progressive.
This means that we have to show X0 ✓ X1 ✓ · · · ✓ X

m

and |X
i

\X
i�1| = 1 for 1  i  m.

22 CHAPTER 2. DISCRETE SCENARIOS

e

W

X

i

X

i�1

Z

00

Z

0

Figure 2.7: Let {e} = X
i�1\Xi

andW = X
i

\X
i�1 and Z = X

i�1\Xi

. By assuption Z = Z 0[Z 00

where Z 0 and Z 00 do not share a vertex. Thus, the cycle Z 0 [Z 00 [W [{e} contradicts T .

Let us first assume that |X
i

\ X
i�1| = 0 holds, which means that X

i

✓ X
i�1. Therefore, we

consider the connected crusade

C 0 = (X0, . . . , Xi�1, Xi+1, . . . , Xm

)

of frontier at most k which contradicts condition 1. Note that |X
i+1\Xi�1|  1 can be concluded

from |X
i+1 \Xi

|  1 and X
i

✓ X
i�1.

Thus, we can assume that |X
i

\X
i�1| = 1 holds for 1  i  m. Next, we prove X

i�1 ✓ X
i

for
1  i  m. We will first conclude that

w(X
i�1 [X

i

) � w(X
i

) (2.2)

holds for 1  i  m. Otherwise, we make use of the crusade

C 0 = (X0, . . . , Xi�1, Xi�1 [X
i

, X
i+1, . . . , Xm

) (2.3)

of frontier at most k which is a contradiction to condition 1. We know that X
i

and X
i�1 are

connected. Thus, the set X
i�1 [X

i

is connected since |X
i

\ X
i�1| = 1 holds. We can also

conclude that |X
i+1 \ (Xi�1 [X

i

)|  1 holds, since |X
i+1 \Xi

| = 1. If |X
i+1 \ (Xi�1 [X

i

)| = 0
holds we can go back to the first step again.

Now assume that Equation 2.2 holds. For any two arbitrary link sets A and B of T we have
w(A [B) + w(A \ B)  w(A) + w(B) which is the question of Exercise 12. We conclude
w(X

i�1 \X
i

)  w(X
i

) for 1  i  m from Equation 2.2 and consider

C 00 = (X0, . . . , Xi�2, Xi�1 \X
i

, X
i+1, . . . , Xm

) . (2.4)

Now, C 00 has frontier at most k.

By the minimality of C w.r.t. condition 2. we conclude that |X
i�1 \X

i

| � |X
i�1| and therefore

X
i�1 ✓ X

i

holds. We conclude |X
i

\ (X
i

\X
i�1)| = |X

i

\X
i�1| = 1 and |(X

i

\X
i�1) \Xi�2| 

|X
i�1 \Xi�2|  1.

It remains to show that X
i�1 \ X

i

is also connected. Assume that this is not the case. Let
{e} = X

i

\ X
i�1 and W = X

i�1 \ X
i

and Z = X
i�1 \ X

i

. By assumption Z = Z 0 [Z 00

where Z 0 and Z 00 do not share a vertex. The situation is depicted in Figure 2.7. We have
X

i�1 = Z 0 [Z 00 [W and X
i

= Z 0 [Z 00 [{e}. Since X
i

and X
i�1 are both connected, and

{e} 62 W there is a cycle Z 0 [Z 00 [W [{e} in T which contradicts to the assumption that T is
a tree, X

i�1 \X
i

is also connected. We have proven the following Lemma.

Lemma 19 For cs(T)  k there is a progressive connected crusade of frontier at most k in T .

2.2. TREES 23

e

2

e

3

v

1

v

2

v

3

35

3

5

7

7

v

4

e

1

�({e
1

, e

2

}) = v

3

w({e
1

, e

2

}) = 7

C = (;, {e
1

}, {e
1

, e

2

})

e

0
2

e

00
3

v

1

v

2

v

3

3

5

5

7

7

v

4

e

0
1

e

00
1

e

0
3

e

00
2

7

7

7

5

3

5

3

7

C

0
= (;, {e0

1

}, {e0
1

, e

00
1

}, {e0
1

, e

00
1

, e

0
2

}{e0
1

, e

00
1

, e

0
2

, e

00
2

})

w({e0
1

, e

00
1

, e

0
2

}) = 10

Figure 2.8: Replacing any link e in the tree T by two consecutive links e0 and e00 yields the
desired correspondance of the frontier and the frontier and the number of agents required for
C = (;, {e1}, {e1, e2}).

e

1

e

2

e

4

e

00
1

e

0
2

e

00
4

e

0
1

e

00
2

e

0
4

Figure 2.9: Replacing any link e in the tree T by two consecutive links e0 and e00. Any link in
T 0 has at least one vertex of degree 2.

Exercise 12 For two link (edge) sets A and B in a graph G prove that w(A[B)+w(A\B) 
w(A) + w(B) holds.

Now, for obtaining a monotone contiguous strategy from above progressive connected crusade,
we first extend the tree T . We replace every link e by two consecutive links e0 and e00 of the
same weight w(e). The newly inserted vertex v has also weight w(v) := w(e). This means that
after this transformation any link has at least one vertex of degree 2. Let T 0 be the outcome
of this process. We will use this property for designing a monotone contiguous strategy from a
progressive connected crusade. Afterwards we can transform the strategy back for acting on T .
Obviously, also cs(T 0)  cs(T) holds.

The main reason for this enlargement is presented in Figure 2.8. Unfortunately, there is no
one to one correspondance between the number of agents required for a contiguous strategy
and the size of the frontier of connected progressive crusade. For example, in Figure 2.8
we require 10 agents for successively cleaning C = (;, {e1}, {e1, e2}) but the frontier of C is
7. If we enlarge the tree by artificial edges, we get the required correspondance for C 0 =
(;, {e01}, {e01, e001}, {e01, e001, e02}{e01, e001, e02, e002}). Here w({e01, e001, e02}) = 10 gives the frontier.

Lemma 20 Let T 0 be a tree so that every link has at least one vertex of degree 2. If there is
a progressive connected crusade of frontier  k in T 0, there is a monotone contiguous search
strategy using  k guards in T 0 and the guards can be initially placed at a single vertex v1.

24 CHAPTER 2. DISCRETE SCENARIOS

e

i

v

i

u

i

v

i

2 �(X

i

)

w(u

i

)

e

i

v

i

u

i

w(v

i

)

e

i

v

i

u

i

w(v

i

) + k � w(X

i�1) � w(u

i

)

u

i

62 �(X

i

)

v

i

62 �(X

i

)

u

i

62 �(X

i

)

v

i

62 �(X

i

)

u

i

2 �(X

i

)

Figure 2.10: Not both vertices v
i

and u
i

can be in �(X
i

). Therefore, also edge e
i

can be cleaned.

Proof. For the progressive connected crusade C = (X0, X1, . . . , Xm

) of frontier  k and e
i

=
(v

i

, u
i

) := X
i

\X
i�1 we construct a strategy that clears the links e1, . . . , em successively.

In the beginning we set k guards at v1. We have w(X1) = w(v1) + w(u1)  k and also
w(e1)  w(u1) and move w(u1) searchers along w1.

Now by induction let us assume that we have constructed a monotone contiguous strategy for
i � 1 links e1, . . . , ei�1 without recontaminations. Consider the edge e

i

= (v
i

, u
i

) incident to
X

i�1, say v
i

2 �(X
i�1).

If w(X
i�1) + w(u

i

)  k holds, w(u
i

) agents can move from v
i

along e
i

to u
i

and clears link e
i

and we are done.

Therefore, assume that w(X
i�1) + w(u

i

) > k holds. In this case not both vertices of e
i

can be
in �(X

i

). We have v
i

2 �(X
i�1). Assume v

i

2 �(X
i

). We conclude deg(v
i

) > 2 and deg(u
i

) = 2.
This means that u

i

2 �(X
i

) implies that the other link f
i

6= e
i

that contains u
i

has to be
contaminated, and u

i

62 �(X
i�1). Therefore, w(Xi

) = w(X
i�1) + w(u

i

), but this has to be  k,
a contradiction.

For w(X
i�1) + w(u

i

) > k at most one vertex of (v
i

, u
i

) is in �(X
i

) and we consider the corre-
sponding cases; see also Figure 2.10.

1. v
i

2 �(X
i

), u
i

62 �(X
i

): As shown above deg(u
i

) = 2 and the other link f
i

6= e
i

that contains
u
i

belongs already to X
i�1. There are already w(u

i

) guards at u
i

in step i � 1 and they
can clear the edge from u

i

to v
i

.

2. v
i

62 �(X
i

), u
i

62 �(X
i

): This means that e
i

is the only contaminated edge adjacent to v
i

and
u
i

. We can move with w(v
i

) searchers from v
i

to u
i

.

3. v
i

62 �(X
i

), u
i

2 �(X
i

): This means that w(X
i

) = w(X
i�1)�w(v

i

)+w(u
i

) and we have at least
w(v

i

) guards at v
i

. Move all k�w(X
i�1) free guards to v

i

. We have w(v
i

)+k�w(X
i�1) �

w(v
i

) + w(X
i

)� w(X
i�1) � w(u

i

) agents at v
i

that can clear e
i

now.

Altogether, there is a successful montone contiguous strategy for T 0 with k agents adapted from
the progressive connected crusade C = (X0, X1, . . . , Xm

) of frontier  k. 2

Note, that the above Lemma also holds for graphs with the same properties. The same holds
for the following Lemma where we show that we can obtain a strategy for T from the strategy
for T 0.

2.2. TREES 25

Lemma 21 Any contiguous monotone strategy for T 0 can be translated to a contiguous mono-
tone strategy for T with the same number k of agents.

Proof. Let e0 = (x, y) and e00 = (y, z) be links stemming from the extension of a link e. If q
guards move from x to y or z to y, they stay in there place in T . If q guards move from y to x
or from y to z, they will move from z to x or from x to z in T , respectively. 2

The other way round, any strategy for T is also a strategy for T 0.

Lemma 22 Any contiguous monotone strategy for T with k agents can be translated to a con-
tiguous monotone strategy for T 0 with the same number k of agents.

Proof. A move along an edge e in T is splitted into two moves along e0 and e00 in T 0. If the move
clears e, then q � w(e) have traversed e. From the construction q searchers are also enough for
w(e) = w(e0) = w(e00) and the weight w(e) of the intermediate vertex. 2

We collect our results:

Proof of Theorem 17: From Lemma 21 we conclude cs(T 0)  cs(T). From Lemma 18 we
obtain a connected crusade of frontier  cs(T) in T 0. From Lemma 19 we conclude that there is a
progressive connected crusade of frontier  cs(T) in T 0. From Lemma 20 we obtain a monotone
contiguous search strategy using  cs(T) guards in T 0 and we can assume that all searchers are
initially at a single starting vertex v1. From Lemma 22 we conclude that there is also an optimal
monotone contiguous search strategy that starts with all guards in a single vertex.

2.2.5 Designing a monotone strategy for unit weights

By Theorem 17 we can start strategy from a single vertex v and we can consider monotone
strategies. Therefore, we design an optimal strategy for any starting vertex v and for the rooted
tree T

v

we compute the minimum number, cs(T
v

), of agents required for starting in v. Finally
we have cs(T) = min

v2T cs(T
v

).

An optimal monotone strategy for computing, cs(T
v

), will also give an ordering all vertices z of
T
v

, stating which subtree, say T
v

(z), of T
v

w.r.t. root v is fully cleared first. For this we can
also consider the subtree T

v

(z) alone with root z and ask for cs(T
v

(z)) for short and an optimal
monotone strategy.

We denote the children of the vertex z of the subtree T
v

(z) of T
v

by z1, . . . , z
d

w.r.t. the order
cs(T

v

(z
i

)) � cs(T
v

(z
i+1)) for i = 1, . . . , d� 1. An example is given in Figure 2.11. Now, we can

prove the main structural result. Unfortunately, there is a flaw in the proof of Barrière at al.
and we can only proof the statement for unit weighted trees. The flaw is precisely marked in
the proof below.

Lemma 23 Let z1, . . . , z
d

be the d � 2 children of a vertex z in T
v

and assume that cs(T
v

(z
i

)) �
cs(T

v

(z
i+1)) for i = 1, . . . , d� 1. We have

cs(T
v

(z)) = max{cs(T
v

(z1)), cs(Tv

(z2)) + w(z)} (2.5)

it the tree T is a tree with unit weights.

Proof. We can assume that cs(T
v

(z)) � cs(T
v

(z1)) holds because we have to clear T
v

(z1)
before clearing T

v

(z). If in Equation 2.5 cs(T
v

(z1) � cs(T
v

(z2) + w(z) holds, we can clear T
v

(z)
by setting w(z) on z and clear all T

v

(z
i

) by cs(T
v

(z1) agents but T
v

(z1) last. Note that also
w((z, z

i

))  w(z
i

)  cs(T
v

(z
i

) for all i for moving back from subtrees to z. Altogether, cs(T
v

(z1)
agents are required and they are su�cient.

	Introduction
	Introductory examples
	Protecting parts of a polygonal area from a set of intruders
	Catching an evader in a grid world
	Enclosing a fire by a single circle
	Simulation and conjecture for a discrete spiral strategy

	Discrete Scenarios
	Graphs
	Polynomial time algorithm for special graphs
	NP-Completeness for graphs

	Trees
	Greedy approximation for a tree
	Exponential time algorithm for general trees
	Capture of an Intruder by moving agents
	Existance of monotone strategies
	Designing a monotone strategy for unit weights
	Computing an optimal contiguous Intruder Search Strategy for unit weights
	Lower and upper bound for the contiguous search

