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Chapter 1

Introduction

In this lecture we consider intruder and evader problems from an algorithmic point of view. We
discuss problems in the context of motion planning in discrete and continuous environments.
Discrete environments will be mainly defined by graphs whereras in the continuous case we will
make use of the Euclidean plane or subsets of the Euclidean plane.

Generally, there is a set of searcher (or guards) and another set of intruder (or evaders) that com-
pete with each other. The intruder tries to escape from the searcher in the given environment.
The other way round the guards would like to protect a certain area from the intruder. Intruder
and searcher can have di↵erent facilities or sensors. There is always some kind of dynamics, the
searcher and/or the intruder can move or perform tasks over time.

The intruder search problem might also be considered as a scenario for the cleaning or the
enclosure of a spreading contamination. For any moment in time the current contamination
represents all possible remaining positions of the intruder. So the task of the searcher is to
reduce the number or to bound the area of these positions and to give a guarantee where the
intruder is located.

More precisely, from a theoretical point of view we would like to answer the following questions:

• Computational complexity (i.e. existence of a strategy, question for the number of guards
required, running time for the computation of a strategy)

• Correctness or Failure (i.e. success of a given strategy, limits of the strategy)

• E�ciency (i.e. number of steps or path length required for a given strategy, area saved by
the guards)

• Optimality (i.e. cost measures for the e�ciency and its analysis)

We will also see that there are many interesting open questions. Sometimes simulations will be
helpful for getting more insight into the problem and a conjecture for a solution. Additionally,
the usage of simulation tools will be part of this lecture.

1.1 Introductory examples

In the following we would like to discuss some simple introductory examples and relate it to
the above questions. This gives some insight into the nature of the problems we would like to
discuss and also shows the variety of methods that will be applied.
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Figure 1.1: Constructing a polygon with doors for a set of n integer a1, a2, . . . , an. The radius r
and the speed v are chosen appropriately so that after t+0.5 time steps the intruders can reach
any point C 0

i

but before t time steps no point B
i

can be reached.

1.1.1 Protecting parts of a polygonal area from a set of intruders

Let us assume that we have a simple room modeled by a polygonal area P (a simple polygon)
and there is a set of n doors that can be closed successively. Additionally, there is a set of
intruders starting at some point s. The intruder moves with speed v. For a given set of n doors
each door can protect the area behind the door. The time for closing a single door d

i

is given
by a value a

i

. Any door d
i

protects a portion A

i

of the polygon from the intruders. (Somehow
it makes sense that the time a

i

for closing the door is proportional to the area A

i

that can be
saved by d

i

.) We would like to close as many doors as possible, thus maximizing the portion
that cannot be entered by the intruders. The doors can only be closed one after the other.

The question is, which doors should be closed successively, so that the intruders cannot enter
the part of the polygon behind the doors. We would like to maximize the area that will be safe.
As a matter of computational complexity we show that this problem is NP -hard.

Optimal-Closing-Sequence
Instance: A simple polygon, a set of n intruders with starting positions and speed 1, a set of
m doors that can be closed successively in time c

i

and saves area A

i

.
Output: Compute the optimal sequence of doors that has to be closed for maximizing the area
saved.

Theorem 1 Computing the optimal closing-sequence for a set of doors in a polygon is NP-hard
in general.

Proof. The subset-sum problem can be reduced to our problem. We have n integer numbers
a1, a2, . . . , an and a integer threshold t and we are searching for a subset-sum, so that the sum
does not exceed t but is as close as possible to t. 1 The subset-sum problem will be transformed
into our problem as depicted in Figure 1.1. We make use of a circle C

r

of radius r. Let s be
the center of the circle. Along the boundary we use non-intersecting secants of length a

i

with
endpoints A

i

and D

i

in clockwise order. A ray starting at s and running through the midpoint

1
Note that partition can be reduced to the subset-sum problem.
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i

we use a
point C 0

i

a fixed distance h away from B

i

. For the construction of the polygon we use the chain
A

i

,B
i

,C 0
i

,D
i

and connect D
i

with A

i+1 and also finally D

n

with A1. There is a door d
i

for each
pair of points B

i

and D

i

. This door can be closed within a

i

time steps and saves a region of
area ai·h

4 proportional to a

i

.

Now we choose the speed v so that v(t+0.5) = r holds. This means that after t+0.5 time steps
an intruder can reach any C

0
i

. Additionally, we have to take care that after t time steps, none
of the entry points B

i

closest to s can be reached by an intruder. Therefore, we choose r large

enough so that vt < x

i

=
q
r

2 �
�
ai
2

�2
holds. Substituting v by r

(t+0.5) gives

⇣
a

i

2

⌘2
<

✓
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2

(t+ 0.5)2

◆
r

2

which can be fulfilled for any a

i

.

Altogether, after t+ 0.5 time steps any entrance point B
i

could be passed but after t time step
none of the entrance points have been visited. If we would like to save the maximum area from
the intruders, we have to compute a maximum sum of values a

i

not exceeding t+0.5 but beeing
as close as possible to t. This gives a solution for the subset-sum problem.

Conversely, for a solution of the subset-sum problem we obtain the maximum sum of values a
i

smaller than t, thus we save a maximum area if we close the corresponding doors successively.
2

Exercise 1 Make use of the GeoGebra-tool and compute an interactive construction of the above
reduction for a finite set of elements a1, a2, . . . , an. Give examples a1, a2, . . . , an and t where the
subset-sum questions is answered with Yes and with No, respectively.

1.1.2 Catching an evader in a grid world

The next example considers a discrete problem variant and a di↵erent intention.

There is some evader that can move in a rectangular grid world and a guard would like to enclose
and catch the evader. For the enclosement and for catching the evader the guard can block and
check cells of the grid while the evader is moving. The evader starts at a single cell and can
visit the cells of the 4Neighborship in one step or could stay in its current cell. Simultaneously,
the guard can block or check k of the cells. Any cell that was blocked cannot be entered by the
evader anymore. In order to synchronize the movements we first let the evader move and then
the guard can choose its k blocking and checking cells; see Figure 1.2.

We do not have an idea of the strategy of the evader. Therefore, simply all possible locations of
the single evader will be considered and marked by red circles. The blocked cells and checked
cells are marked by black circles. We would like to find an e�cient strategy for the guard. That
is, we would like to enclose the evader as fast as possible. After that the guard simply checks
all the remaining red cells. The game ends when there is no single red cell any more.

Evader-Enclosement (Grid-Graph):
Instance: A rectangular grid, a start vertex s of the evader and k protecting guards per time
step.
Output: Compute a protection strategy that encloses the evader (and finally find the evader).

We first discuss failure and correctness for di↵erent values of k, we will see that some machinery
is necessary.

Lemma 2 Catching an evader in a grid world by setting k = 1 blocking cells after each move-
ment of the evader cannot succeed in general.
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s

k = 2

Figure 1.2: The evader starts at s. In the first step he can move to the adjacent vertices of the
grid. For k = 2 the guard blocks and checks two cells afterwards. Now the evader can move on.

Proof. We show that the evader always has an escape strategy. Or the other way round, a
guard can never cancel out all cells marked red.

For a formal proof we show that it is already impossible to catch the evader in a single quadrant
of cells. The evader starts at the source of the quadrant, also called root in the following; see
Figure 1.3. For any step l � 1 let D

l

denote the set of vertices that are distance l away from
the root vertex. This means, that these cells lie on the l-th diagonal of the quadrant.

Let r

l

denote the number of blocked cells in D

l+1, Dl+2,. . . at the end of the l-th step. The
blocked cells in D

l+1, Dl+2,. . . can be considered to build a reserve for the future. Let B
l

✓ D

l

denote the number of red cells at the end of the l-th step distance l away from the root. We
have r0 = 0.

By induction we show that B
l

� 1 + r

l

holds for all l � 1. In the first step l = 1 the evader can
move to both vertices of D1 and the guard can block a single cell, either in D

t

for t = 0, 1 or in
D

t

for t > 1. The latter one means r1 = 1. In any case we have B1 � 1 + r1.

Let us assume that the statement holds after l � 1 steps. We can assume B

l

� 1 + r

l

. This
means that in step l the evader can visit r

l

+ 1 + 1 cells in diagonal D
l+1. But some of them

might already be blocked by the reserve and another one can be blocked by the guard in this
step. Let us assume that there are x  r

l

blocked cells in D

l+1.

This means that at first (the evader moves) we have B

l+1 � 1 + 1 + r

l

� x red cells in D

l+1.
Now the guard can block another cell in step l also. Either in D

t

for t  l, in D

t

for t = l + 1,
or in D

t

for t > l + 1.

In the latter case we have r
l+1 = 1+r

l

�x and in the former cases we have r
l+1 = r

l

�x. Now the
guard can only reduce B

l+1 by blocking a vertex in D

l+1. In any case we have B

l+1 � 1 + r

l+1

which gives the conclusion. 2

Note that for the pure enclosement of the evader it seems reasonable that in step l the guard
should never block a cell that was marked by a red circle in one of the previous rounds < l.

Exercise 2 Give a formal argument for the fact that a fast guard strategy should first enclose
the evader and then check the remaining cells. This means that in step l the guard strategy will
not choose a red marked vertex that was marked in a step < l until the evader cannot move
anymore.
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Figure 1.3: The situation for k = 1 after step 2. We have r2 = 1 and B2 = 1 + r2 = 2.
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Figure 1.4: For k = 2 there is a guard strategy that encloses the evader after 8 steps. Now the
evader can be catched by checking the remaining 18 cells.

Fortunately for k = 2 there is a successful strategy. We can just give the sequence of steps for
the enclosement as presented in Figure 1.4. After that the remaining cells can be cleaned.

Lemma 3 There is a successful guard strategy for k = 2. The evader can be enclosed after 8
steps. With 9 additional steps the evader will be catched.

Proof. By construction; see Figure 1.4. 2

The above situation can also be considered as the problem of containing a spreading fire. We
slightly change the rules of the game. Let us assume that the firemen first blocks k cells and
then the fire can spread from the source s to its neighboring cells. A burning cell can never be
blocked any more.

In this sense and for k = 2 a firemen can enclose a spreading fire in 8 steps as depicted in
Figure 1.4. Here only 18 vertices get burned. We give a formal proof that this is optimal.

Lemma 4 For the outbreak of a fire on a single source in a grid and the usage of two firefighters
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per time step any successul strategy encloses an area of at least 18 burning vertices. This bound
is tight.

Proof. For the proof of the statement we make use of an Integer Linear Program as follows. We
already know that it is possible to enclose 18 burning cells by the strategy given in Figure 1.4
in 8 time steps. Therefore we make use of a fixed constant T > 8 for the number of time steps.
Additionally, we use a grid of size l ⇥ l for another fixed constant l.

Let L = {(x, y)||x|  l and |y|  l} and 0  t  T . For v 2 L let N(v) denote its 4Neighborship
in L. For the Integer Program we use the following variables for v 2 L.

b

v,t

=

⇢
1 : vertex v 2 L burns before or at time t

0 : otherwise

d

v,t

=

⇢
1 : vertex v 2 L is defended before or at time t

0 : otherwise

We would like to minimize the number of vertices that become burned.

Minimize
P

v2L b

v,T

so that b

v,t

+ d

v,t

� b

w,t�1 � 0 : 8v 2 L, v 2 N(w), 1  t  T

b

v,t

+ d

v,t

 1 : 8v 2 L, 1  t  T

b

v,t

� b

v,t�1 � 0 : 8v 2 L, 1  t  T

d

v,t

� d

v,t�1 � 0 : 8v 2 L, 1  t  T

P
v2L(dv,t � d

v,t�1) � 2 : 81  t  T

b

v,0 = 1 : v 2 L is the origin (0, 0)

b

v,0 = 0 : v 2 L is not the origin (0, 0)

d

v,0 = 0 : 8v 2 L

d

v,t

, b

v,t

2 {0, 1} : 8v 2 L, 1  t  T

The first inequality triggers the spread of the fire. The neighbor of a burning vertex is either
blocked or it burns in the next step. Note that with this condition any vertex can also burn
accidently. But this will not happen in the optimal solution. The next inequality prevents
a defended vertex from burning and a burning vertex from beeing defended. The next two
inequalities take care that the status of the vertices remains the same after burning or beeing
defended. The sum condition refers to the number k = 2 in any step. Initially only one vertex
is burning and no vertex is defended. Finally, the program gets binary.

The corresponding program was run for example by Develin and Hartke [] and for l = 6 and
T = 9 and the origin (0, 0) the solution of Figure 1.4 was achieved. 2

The above proof is an example where we make use of a computer aided process for the conclusion
of a theoretical proof. With similar arguments it is also possible to show that 18 vertices cannot
be enclosed within less than 8 steps.

1.1.3 Enclosing a fire by a single circle

In the last section we have seen that catching an evader and the enclosement of a fire are
very similar problems which can be formulated in a similar model. Let us consider the fire
containment problem in the following continuous setting.

The fire is already burning for a while and the fire spreads into any direction with the same unit
speed 1. There is a single firefighter which can build a firebreak with speed v > 1. Geometrically
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Figure 1.5: The firefighter builds a firebreak of length t with speed v > 1 and the fire expands
from the source with speed 1. The circular strategy is successful here.

we can assume that in the beginning of the game the fire is a circle of radius A from a source
C and the circle grows with speed 1 while the firefighter builds a path t with speed v > 1; see
Figure 1.5. We call this the geometric firefighter problem.

Geometric Firefigther Problem
Instance: A circle with center C of radius A that grows with unit speed. An agent who builds
a firebreak with speed v > 1
Output: Compute a strategy that finally fully enclose the spreading fire.

A simple question is: How fast must the firefighter be in order to enclose the fire by a single
circular loop around the source of the fire? Let us assume that we can choose an arbitrary
starting point p for the firefigther.

Lemma 5 Enclosing a fire of extension A with a single circular loop around the source of the
fire is possible, if and only if the speed v of the firefigther is larger than 2⇡.

Proof. We assume that the fire source is given by the origin and we choose a point p = (A+x, 0)
away from the fire. A single circular loop around the origin has length 2⇡(A + x) and takes
2⇡(A+x)

v

time. We can enclose the expanding circle if this is smaller than or equal to x. This
gives 2⇡A

x

+ 2⇡  v. For v > 2⇡ there will always be an x so that the inequality holds. For
v  2⇡ we can never fulfill the required inequality. 2

Exercise 3 Consider the above circular strategy. Assume that it is allowed to move along an
arbitrary circle (around an arbitrary center). Is it possible to improve the above bound? I.e., is
the above bound tight for arbitrary circles or can we always succeed with a circle and speed less
than 2⇡?

1.1.4 Simulation and conjecture for a discrete spiral strategy

Finally, we would like to motivate that in some settings it is helpful to make some simulation.
We would like to enclose a spreading contamination in a grid world and apply a strategy that
always moves close to the boundary of the contamination. The agent has to move from one cell
to the other and can build a wall as in the previous setting. The agent either moves clockwise
or counterclockwise around the starting contamination. We assume that the contamination is a
grid square in the beginning.
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Figure 1.6: The fire spreads after 30 steps and the agent build a wall cell within 5 time steps.
The lefthandside figure shows the situation after 30 time steps. The contaminations is enclosed
in a single loop after a few more steps.

Figure 1.7: The fire spreads after 30 steps and the agent build a wall cell within 15 time steps.
After a while it seems that the spiral strategy will not succeed.

Parameters: Moving from one cell to the other takes one time step. Building a wall element
and cleaning a cell takes b time steps. After n time steps the contamination spreads. This means
that the 4Neighborship of any contamintated cell becomes contaminated but cells that contain
a wall element cannot be contaminated anymore.

Discrete Firefigther Problem
Instance: A grid contamination some size B that spreads to its 4Neighborship after n time
steps. An agent who cleans a cell, builds a wall and leaves the celle within b time steps.
Output: Compute a strategy that finally fully enclose the spreading fire.

Figure 1.6 shows an example for a 3 ⇥ 3 starting contamination with a single agent, b = 5 and
n = 30 after exactly 30 time steps and when the task is finished. Figure 1.7 shows the case
where n = 30 and b = 15, the spiral strategy does not succeed.

Experiments from the thesis of Smiegilski [] give the following conjecture.

Conjecture 1 For a grid fire thats spreads after n time steps and an agent that builds a wall
within b time steps, the spiral strategy only succeeds if b < n�1

2 holds.
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