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6.3 Continuous variant in simple polygons

In Section 6.1 we considered the optimal escape path for some special convex environment. For
more complicated environments the escape path is still unknown and it is unrealistic to think
that there will be much progress in the near future. Therefore we are searching for an escape
path that can be computed easily and might serve as a substitute.

Assume that you are located within an unknown environment and would like to reach its bound-
ary. Formally, for the environment we consider a closed Jordan curve B that subdivides the
Euclidean plane into exactly two regions. The starting point s lies inside the inner region, say
P . Starting from s the task is to find a point on the boundary B as soon as possible.

If you have some idea about the distance x from s to the boundary B but nothing more, it is very
intuitive to move along the circle of radius x around the starting point. Therefore a reasonable
strategy moves toward this circle along a shortest path (by radius x) in some direction and then
follows the circle in either clockwise or counterclockwise direction until the boundary is met.
Let us call this a circular strategy. If we hit the boundary after moving an arc of angle ↵x along
the cirlce the overall path length is given by x(1 + ↵x).

We would like to use such a circular strategy of small path length. In the sense of a game, the
adversary can only rotate the environment around the starting point and the certificate path
guarantees to hit the boundary for any rotation.

6.3.1 Extreme cases and general definition

Let us first consider two somehow extreme examples of the above intuitive idea as given in
Figure 6.10. If the distance from s to the boundary is almost the same in any direction (similar
to a circle), a line segment with maximal distance to the boundary (roughly the radius of the
circle) will always hit the boundary and is indeed a very good escape path for any direction;
see Figure 6.10(ii). The movement along an arc is not necessary in this case. In other words ↵x

equals 0. We check a single direction for the largest distance.

On the other hand, if the distance to the boundary is very large w.r.t. almost all directions
from s but is relatively small (distance x) for some few directions, a segment of length x and a
circular arc of length x↵x with ↵x ⇡ 2⇡ will hit the boundary for any starting direction of the
segment x; see Figure 6.10(i). The overall path length x(1 + ↵x) is also relatively small. We
check a small distance for many (almost all) directions. Figure 6.11 shows a sketch of the radial
maximal distance function of the extreme examples in Figure 6.10.

Now consider a more general environment modeled by a simple polygon P and a fixed starting
point s in P as given in Figure 6.12(ii). For convenience we first make use of an example where
any boundary point b of P is visible from s, i.e. the segment sb lies fully inside P .

In general, for keeping the certificate simple, we always take the maximal distance to the bound-
ary in any direction into account; see also Figure 6.13.

For any arbitrary polygon P and for any radial direction � 2 [0, 2⇡] from s we consider the
boundary point ps,� on P with maximal distance from s in direction �. This gives a radial
maximal distance function f(�) := |s ps,�| as depicted in Figure 6.12(i).

Now let ps,� be a point with maximal distance x := |s ps,�| in direction �. For any circle Cs(x)
with radius x around s such that Cs(x) hits the boundary of P there will be some maximal arc
↵s(x) so that the above simple circular strategy is successful independently from the starting
direction for x. We are looking for the maximum circle segment of Cs(x) that fully lies inside P .

Let ⇧s(x) denote this certificate path for distance x of maximal length x(1 + ↵s(x)). The
interpretation is, that independently from the starting direction for x this finite path will always
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Figure 6.10: Two extreme situation for reaching the boundary with a circular arc. In the
righthandside figure the radial maximal distance from s to the boundary is almost the same
in any direction. So it su�ces to move in an arbitrary direction of maximal distance which is
optimal. In the lefthandside figure only the distance to some few boundary points is very small
but much larger to most of the others. Therefore a reasonable path checks the small distance
with a circular arc of length almost 2⇡. In both case x(1+↵x) is minimal among all such circular
strategies. The distance functions of the two examples and the geometric interpretation of the
reasonable escape paths is shown in Figure 6.11.

hit the boundary. The adversary can only rotate the environment for attaining a worst case
length of x(1+↵x). The path ⇧s(x) can be translated into the radial maximal distance function
setting. It consists of two segments, starting with a vertical segment of length x and ending
with a horizonal segment of length ↵x; see Figure 6.12(i). For any starting angle this path will
hit the boundary of the distance function.

In turn, the overall certificate path ⇧s in P for a given starting point s is the shortest certificate
path ⇧s(x) among all distances x. That is, the certificate for P and s is:

⇧s := min
x

⇧s(x) = min
x

x(1 + ↵s(x)) .

Note that, if not the whole boundary is visible from s, the radial maximal distance function can
have incontinuouities. This means that in some directions there is more than one boundary point
and the maximal distance jumps. To be on the safe side we do not change the definition and
simply add a vertical segment into the radial distance function between these jumping maximal
distances; see for example Figure 6.13 in the Appendix ??. The corresponding points of the
segment lie outside the polygon and the certificate guarantees to leave the polygon.

Of course, the escape path definition could also be changed in order to take the distance to all
boundary points into account. The radial maximal distance computation would be no longer
a function in this case, it is rather a curve. This would also mean that an online escape path
has to cope with environments that are gashed like the escape path. We would like to keep the
definition as simple as possible and we precisely handle all cases where the starting point is in
star-shaped position.

If not the whole boundary is visible from s, the radial maximal distance function can have
incontinuouities. This means that in some directions there is more than one boundary point.
To be on the safe side we do not change the definition and simply add a vertical segment
into the function between these jumping maximal distances; see for example Figure 6.13. The
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Figure 6.11: A sketch of the radial distance curves of the environments in Figure 6.10 for the
origin s. The value x(1 + ↵x) is the minimal length so that the two segments of length x and
↵x hits the boundary of the distance curve for any starting angle of the segment x. In each
figure the worst case starting direction for the segment x is shown. The length x(1 + ↵x) in the
polygonal setting corresponds to the volume below the segment ↵x plus the distance x.
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Figure 6.12: (ii) Consider the polygon P and a starting point s. Let us assume that we radially
sweep the boundary of P (starting from point F with angle 0) in counterclockwise order and
calculate the maximal distance from the boundary to s for any angle. (i) shows this radial
maximal distance function of the boundary of P from s in polar coordinates for the interval
[0, 2⇡]. The blue sub-curve corresponds to the blue boundary part in (ii). The certificate path
⇧s(x) for distance x is the longest path that successfully checks the distance x by a circular
strategy. This means that it hits the boundary for any starting direction � of x in P . In the
polar-coordinate setting in (i) this is a path with two line segments of length x and ↵x that
always hits the boundary of the radial distance function independent from the starting angle �.
For the case where the boundary of P is not totally visible an example is given in Figure 6.13.

corresponding points of the segment lie outside the polygon and the certificate guarantees to
leave the polygon.

6.3.2 Interpretation of the certificate for a maximal distance distribution

In general the definition of a certificate path takes the maximal distances from the starting point
s into account. If only the distribution of the maximal distances of an arbitrary environment E is
known, we can define a polygon that represents this distribution; see Figure 6.14. The certificate
for this polygon is also an escape path for E. This interpretation resembles the discrete variant
of Kirkpatrick; compare to Figure 6.7(iv) in Section 6.2.

We can always define an environment that represents a distance distribution of maximal distances
as represented in Figure 6.14. Here the boundary of the polygon P is defined in polar coordinates
by (�, x(�)) for ' 2 [0, 2⇡) where x(�) is an increasing function (say the distance distribution
for some E.). The environment is made polygonal by a line segment l from A = (0, x(0)) to a
point B = (2⇡, x(2⇡)).

In this case the certificate path ⇧s(x(�)) for distance x(�) is given by a segment s to (�, x(�))
and the clockwise circular arc of angle (2⇡��) that hits l; see Figure 6.14. Thus, the certificate
path ⇧s(x(�)) represents the maximal amount of distances that are larger than x(�) all others
are smaller than or equal to x(�). If we move along ⇧s(x(�)) starting from s in an arbitrary
direction we will finally always met a boundary point of P at distance  x(�).

Note that alternatively, the certificate path ⇧s(x(�)) can start with a segment of length x(�)
almost touching the segment AB and moving counterclockwise along the arc. For the overall
certificate path the angle � is chosen so that x(�)(1 + 2⇡ � �) is minimal among all � 2 [0, 2⇡].
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Figure 6.13: (ii) If parts of the boundary of polygon P = ABCDEFGH are not visible from
s the maximal distance to the boundary jumps for example from sD to sC 0. The points in
between lie outside the polygon, the certificate is a bit pessimistic but we are on the safe side.
We make use of a vertical segment in the maximal radial distance function in (i). In principle
we make use of the radial maximal distance function of a polygon P 0 that fully contains P and
the boundary of P 0 is visible from the staring point. Then we define the certificate for P 0 wich
is ABC 0DEFGH 0 in the above case.

6.3.3 The certificate outperforms the best known escape paths

The best escape path as considered by Bellman and others was designed as a single deterministic
finite path for all starting positions of a given fixed environment. It leads out of the given
environment from any starting position. There is a worst case position where the full path
length is required, the environment is left with the very last point. The monograph of Finch
and Wetzel (2005) gives a nice overview.

If the escape path is given, for any starting point the adversary can rotate the environment so
that the path length for leaving the environment with this path is maximal. The same holds for
the certificate path computed for any given starting point, the worst case is simply given by the
length of the certificate. So we can compare the two worst case rotations for any starting point.

For circles, semi-circles with an opening angle ↵ larger than 60 degrees and for fat convex bodies
it was proved that the diameter is the best escape path; see the examples shown in Figure 6.16
where also the definition of fatness is given.

This means that for an arbitray position the agent moves along a line segment. For any position
s the worst case for this escape path is given by a rotation of the environment so that a segment
of maximal length x has to be used. Our certificate will use such a path as a possible alternative
⇧s(x) of distance x with angle ↵x = 0. This means that in all environments where the diameter
is the best escape path, the certificate is as least as good as this path for any position. Note,
that the certificate will definitely be better for many starting points.

Certificate versus Besicovitchs path

Consider an equilatateral triangle as depicted in Figure 6.15. Besicovitch Zig-Zag path is the
up to now best known escape path for this problem. The Zig-Zag path is symmetric and consist
of three segments of length

p
21/14 which gives total length ⇡ 0.981918; see also Section 6.1.2.
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Figure 6.14: An environment P in (ii) where the radial distance curve in (i) is an increasing
function (�, x(�)) (except for the closing segment). The certificate path ⇧s(x(�)) consists of a
segment of length x(�) and an arc of length x(�) ·↵x(�) with ↵x(�) = 2⇡��. Note that ⇧s(x(�))
can also start with a segment almost parallel with the X-axis as depicted by the dashed segments
in (i) and (ii). The certificate path represents the maximal amount of distances that are larger
than x(�).

Figure 6.15: The Zig-Zag path of Besicovitch is assumed to be the best escape path for an
equilateral triangle. A worst case position is for example given by X

1

. On the lefthandside
the radial distance curve of point s is shown. The certificate path for such points close to the
boundary is very short. The usage of the Zig-Zag path is much worser. If the starting point s

1

is a bit away from the boundary the Zig-Zag path attains a worst case for a leaving point on
the boundary farthest away. Thus, the certificate is also always better in such cases.
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Figure 6.16: Three environments where the diameter L is the best escape path. (i) A circle,
(ii) a semi-circle with angle ↵ � 60�. (iii) A so-called fat convex body, where fatness is defined
over a rhombus with angle � at least 60�, the diameter of the rhombus equals the diameter of
the body and the rhombus has to fit into the environment. Using the optimal escape path (line
segment L) from an arbitrary starting point s results in the largest distance x to the boundary
(dashed path L0) in the worst case. This is always also the certificate path ⇧s(x) of distance x
with ↵x = 0. So the minimal certificate path is as least as good as the diameter path.

An example of a worst case starting point X
1

is given in Figure 6.15.

For starting points somewhere in the center of the triangle, the Zig-Zag path is worse than the
largest distance to the boundary; see for example starting point s

1

in Figure 6.15. Thus, the
certificate is shorter for these points. For starting points close to the boundary the certificate is
significantly better by a short circular check; see for example starting point s

1

in Figure 6.15. We
sketch a formal proof, that the Zig-Zag path can never beat the certificate, the angular values
are chosen from the optimization of Besicovitch path from Section 6.1.2. Thus, in Figure 6.17

we have ↵ = arcsin
⇣

1p
28

⌘
⇡ 10.9� and x =

p
3/28.

If the Besicovitch Zig-Zag path does not hit a point on the boundary with maximum distance
away from the starting point, it does not hit one of the three vertices of the triangle. Only in
this case Besicovitch Zig-Zag path can beat the certificate. In this case the Besicovitch path has
to make use of at least two segments (each of length x =

p
3/28) for leaving the triangle. As

shown in Figure 6.17 only a small area close to a vertex of the triangle has to be checked. For
all those points we find a circular strategy that is shorter than 2x which is always required by
the Zig-Zag path.

6.4 Online approximation of the certificate path

We are searching for a short escape path in an unknown environment. As shown in the previous
section the certificate path and its length is a reasonable candidate for comparisons.

We apply the following logarithmic spiral strategy. A logarithmic spiral can be defined by polar
coordinates (', a · e' cot(↵)) for ' 2 (�1,1), a constant a and an excentricity � as shown in
Figure 6.18. For an angle � the path length of the spiral up to point (�, a · e� cot(�)) is given
by a

cos↵e
� cot(�). For our purpose we choose � so that the two extreme cases of the certificate

attain the same ratio; see Figure 6.18. We can assume that the certificate of the environment is
x(1 + ↵x) for an arbitrary distance x and an angle ↵x 2 [0, 2⇡]. Since the spiral strategy checks
the distances in a monotonically increasing and periodical way, there has to be some angle �
so that x = a · e(��↵

x

) cot(�) holds. This means that in the worst case the spiral strategy will
leave the environment at point p = (�, a · e� cot(�)) with path length a

cos� · e� cot(�). Exactly ↵x

distances of length x have been exceeded, which means that the boundary has to be visited.

We would like to choose � so that the two extreme cases ↵x = 0 and ↵x = 2⇡ have the same
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Figure 6.17: For comparing the certificate and the Zig-Zag path we only have to consider the
case where the triangle cannot be rotated so that the Besicovitsch path ends in the vertex
farthest away. For starting points s below the bisector of A and C this can only happen if s is
at least vertical distance d = x sin 2↵ away from segment AC. For starting points above the the
bisector of A and C this can only happen, if s is at least vertical distance d = x sin 2↵ away from
segment AB. For both cases it remains to consider the points in the rhomboid R. Fortunately,
we can use a circle of radius d0 = 0.125 (slightly larger than d) so that the circle of radius d0

with starting point in R touches the boundary with an arc of lenght at most 2⇡� 2

3

⇡ = 4

3

⇡ and
d0(4

3

⇡ + 1) is always strictly smaller than 2x.
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Figure 6.18: We apply a spiral strategy at the starting point s for arbitrary unknown polygons.
The excentricity � is chosen so that the two extreme cases always have the same ratio. Here
for both polygons P

1

and P
2

in the worst case the strategy passes the boundary at point p =
(�, a · e� cot�) close to C. The path length of the strategy for leaving the polygons is roughly the
same. The certificate for P

1

has length |s C| (checking the maximal distance to the boundary of
P
1

) whereas the certificate for P
2

has length |s B|(1 + 2⇡) with |s C| = e2⇡ cot� |s B| (checking
the smallest distance to the boundary of P

2

with a full circle). We can construct such examples
for any point p on the spiral.

ratio. Thus, we are searching for an angle � so that

a
cos� · e� cot�

a · e� cot�(1 + 0)
=

a
cos� · e� cot�

a · e(��2⇡) cot�(1 + 2⇡)
, (6.1)

1 =
e2⇡ cot�

1 + 2⇡
(6.2)

holds. The righthandside of Equation (6.1) shows the case where x
2

= a · e(��2⇡) cot(�) and
↵x2 = 2⇡ gives the certificate and the lefthandside shows the case that x

1

= a · e� cot(�) and
↵x1 = 0 gives the certificate xi(1 + ↵x

i

), respectively. In both cases the spiral will detect the
boundary latest at point p = (�, a · e� cot(↵)) because the spiral checks 2⇡ distances larger than
or equal to x

2

and at least one distance x
1

. Figure 6.18 shows the construction of corresponding
polygons P

1

and P
2

.

The solution of Equation (6.2) gives � = arccot
⇣
ln(2⇡+1)

2⇡

⌘
= 1.264714 . . . and the ratio is

1

cos� = 3.3186738 . . .. Fortunately, for all other values x = a · e(���) cot� and ↵x = � for
� 2 (0, 2⇡) the ratio is smaller than these two extremes. The overall ratio function is

f(�) =
a

cos� · e� cot�

a · e(���) cot�(1 + �)
=

e� cot�

cos�(1 + �)
for � 2 [0, 2⇡] (6.3)

and Figure 6.19 shows the plot of all possible ratios of the spiral strategy with excentricity �.
Altogether, we have the following result.

Theorem 76 There is a spiral strategy for any unknown starting point s in any unknown en-
vironment P that approximates the certificate for s and P within a ratio of 3.31864.
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Figure 6.19: The graph of the ratio function f of Equation (6.3) for the spiral strategy with
excentricity � ⇡ 1.26471. The two extreme cases 0 and 2⇡ have the same ratio ⇡ 3.31864 and
all other ratios are strictly smaller.

Proof.

Assume that the certificate of P and s is given by x(1 + ↵x). We can set � := ↵x and we will
also find an angle � so that x = a · e(���) cot� holds. At point p = (�, a · e� cot�) the spiral has
subsumed an arc of angle � with distances x, so the spiral strategy will leave P at p in the worst
case. The ratio is given by f(�) as in (6.3) and Figure 6.19. In the worst case for the strategy
� is either 0 or 2⇡ for the ratio 3.31864, respectively. 2

Note that for the starting situation we can start the spiral after a movement along a segment of
fixed length a. Such starting problems are covered by an additive constant in the competitive
analysis framework.
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