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Chapter 4

Randomized variants

In this chapter and before turning over to some geometric variants of the intruder search problem,
we would like to resume the graph decontamination problem for stationary guards in order to
show that there are also randomized strategies and problem variants that can be discussed.

We show a slightly better approximation as the greedy algorithm for trees by a randomized
strategy. Additionally, we interpret the search number of a graph in the configuration that the
fire spreads from any vertex with the same probability. We concentrate on positive results.

4.1 Better approximations for trees by randomization

We pick up the firefighter problem for trees again. As already asked for in Exercise 10 we can
formulate the problem as an integer LP by the following rules. Let v  u denote that v equals
u or is a predecessor of u w.r.t. the root r of tree T .

Minimize
X

v2V
x
v

w
v

so that x
r

= 0 = 0

X

vu

x
v

 1 : for every leaf u

X

v2Li

x
v

 1 : for every level L
i

, i � 1

x
v

2 {0, 1} : 8 v 2 V

In the above integer LP the weights w
v

denote the number of vertices in the subtree T
v

of vertex
v w.r.t. the root r.

Let opt

ILP

denote the optimal solution of the above integer LP. For the approximation we solve
the problem in polynomial time for x

v

2 IR�0. The optimal solution, opt

RLP

, is a fractional
solution so that a subtree T

v

with x
v

= a  1 is called a-saved, a portion a ·w
v

of the subtree is
saved. For two vertices v1 and v2 on the same path from the root r to a leaf u and v1 is ancestor
of v2 and x

v1 = a1 and x
v2 = a2 the vertices of T

v2 are (a1 + a2)-saved. The remaining vertices
of T

v1 are only a1-saved.

The simple idea is that we would like to use a rounding scheme. But we do this in a randomized
fashion. For each level we interpret the a-values as a probability dsitribution for choosing a
vertex to be safe. This is a rounded strategy w.r.t. the distribution. On each level we simply
choose a vertex at random according to its distribution. Note that the sum of the a-values for
level i could be smaller than 1. We interpret the remaining portion as the probability of choosing
none of the vertices in this level. The main problem is that we might choose vertices that are
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44 CHAPTER 4. RANDOMIZED VARIANTS

on the same path from the root to a leaf. If no such double-protections occur the expected value
of the rounded strategy would be at least opt

ILP

and the expected approximation value would
be indeed 1.

If also a successor of a vertex is choosen by our procedure, we simply delete it in the final solution
and do not choose another vertex at this level. This makes the choosing procedure independent
for every level. Altogether, the only loss we have is for the double-protections. Let us assume
that they can occur. What happens if the a tree T

vi at level i is fully saved by the fractional
strategy? We would like to argue that in the worst-case the fractional strategy has assigned a
1/i fraction to all vertices on the path from r to v

i

and the subtree is fully saved by the rounding
scheme with probability

1� (1� 1/i)i � 1� 1

e
.

We put this intuition into a formal argument.

Theorem 41 Consider an algorithm that protects the vertices w.r.t. the probability distribution
given by opt

RLP

. The expected approximation ratio of the above strategy for the number of
vertices protected is

�
1� 1

e

�
.

Proof. Let S
F

denote the fractional solution for opt

RLP

. For an integer solution, we choose a
vertex on each level w.r.t. the probability distribution from opt

RLP

. Let S
I

denote the outcome
of this assignment. We would like to show, that the expected value of S

I

is larger than
�
1� 1

e

�

times the value of S
F

which in turn outperforms opt

ILP

.

Let xF
v

denote the value of x
v

for the fractional strategy and let xI
v

denote the value {0, 1}
of the integer strategy. For convenience we denote y

v

=
P

uv

x
u

2 {0, 1}, which indicates

whether v is finally saved or not. Let yF
v

=
P

uv

xF
u

 1 denote the fraction of v saved by
the fractional strategy. For y

v

= 1 it su�ces that one of the predecessor of v was chosen. Let
r = v0, v1, v2, . . . , v

k

= v be the path from r to v, so we have

Pr[y
v

= 1] = 1�
kY

i=1

(1� xF
vi
) .

For example, the probability that v2 is safe is x1 + (1 � x1)x2 = 1 � (1 � x1)(1 � x2) and the
probability that v3 is safe is 1�(1�x1)(1�x2)+(1�x1)(1�x2)x3 = 1�(1�x1)(1�x2)(1�x3)
and so on.

Thus we compute

Pr[y
v

= 1] = 1�
kY

i=1

(1� xF
vi
)

� 1�
 P

k

i=1(1� xF
vi
)

k

!
k

= 1�
 
k �

P
k

i=1 x
F

vi

k

!
k

= 1�
✓
k � yF

v

k

◆
k

= 1�
✓
1� yF

v

k

◆
k

� 1� e�y

F
v �

✓
1� 1

e

◆
yF
v

. (4.1)

The first inequality is a standard inequality for means of positive real values x1+x2+···+xn
n

�
n
p
x1 · x2 · · ·xn. The second and third inequalities stem from classical analysis where we use the

fact that 0  yF
v

 1 holds.
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The value of S
F

is simply the sum of all yF
v

. Thus, we conclude

E(|S
I

| =
X

v2V
Pr[y

v

= 1] �
✓
1� 1

e

◆X

v2V
yF
v

=

✓
1� 1

e

◆
|S

F

| .

2

Altogether, we have a randomized polynomial time algorithm for trees with an expected ap-
proximation ratio better than the 1

2 -approximation of greedy.

Exercise 17 Prove x1+x2+···+xn
n

� n
p
x1 · x2 · · ·xn for positive real values x

i

. Also prove the last
two inequalities of Equation 4.1 in the proof of Theorem 41.

4.2 Search numbers for random fire sources

The second part on randomization is that we might use it to consider the situation that the
starting vertex of the fire has some influence on the number of agents required. Therefore, in this
section we again consider the firefigther problem on graphs but the start of the fire is choosen
uniformly at random among all vertices. The question is, what is the number of agents required
so that for a given class C of graphs it can be expected that at least linear number of vertices
can be saved.

This subsumes many questions handled before. We would like to have a classification by the
properties of C, we would like to find a minimum number k of agents required and we use an
expected value for assuming that the fire can start in any vertex with the same probability.

For a graph G = (V,E) and a fixed number k of agents, the k-surviving rate, s
k

(G), is the
expectation of the proportion of vertices that can be saved if the fire can start from any vertex
with the same probability. We are looking for classes, C, of graphs G so that for a fixed
constant ✏, s

k

(G) � ✏ holds for any G 2 C. This means that at least ✏ · |V | vertices will be
saved. For a given graph G, a given k and a vertex v 2 V let sn

k

(G, v), denote the number of
vertices that can be protected by k agents, if the fire starts at v.

We are also searching for the minimal number k that guarantees s
k

(G) � ✏. This means that

1

|V |
X

v2V
sn

k

(G, v) � ✏|V |

has to be shown. For a class C let the minimum number k that guarantees s
k

(G) > ✏ for any
G 2 C be denoted as the firefighter-number, ↵n(C), of C.

Firefighter-Number for a class C of graphs:
Instance: A class C of graphs G = (V,E).
Question: Assume that the fire breaks out at any vertex of a graph G 2 C with the same
probability. Compute ↵n(C).

Theorem 42 For planar graphs we have 2  ↵n(C)  4.

There is a simple argument for the lower bound 2  ↵n(C). Consider a planar bipartite complete
graph with 2 and n� 2 vertices on the corresponding sides. For any starting vertex at most one
vertex can be saved and 1

n

will become arbitrarily small.

For the upper bound we first show a somewhat easier result that shows the main idea. The
vertices are subdivided into classes X and Y , where a root vertex from set X allows to save
many (a linear number of) vertices and a root vertex from the set Y allows to save only few
(almost zero) vertices. Finally, |Y |  c|X| gives the bound.
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Theorem 43 For planar graphs G with no 3- and 4-cycle, we have s2(G) � 1/22.

Proof. We make use of the Euler formula, c+ 1 = v � e+ f , for planar graphs with e edges, v
vertices, f faces and c components. We assume that the graph is connected, that is c = 1. A
planar graph with no 3- and 4-cycle has average degree less than 10

3 . If not, we assume 10
3 v � 2e,

summing up the degrees of al vertices gives twice the number of edges. We can also conclude
5f  2e, since any face has at least 5 edges that can neighbor two faces. This means f  2

5 .
Inserting v � 3

5e into the formula gives f � 2 + 2
5 , a contradiction. With similar arguments we

can show that a graph with no 3-, 4 and 5-cylces has average degree less than three, which is
the question of Exercise 18.

We subdivide the vertices V of G into groups w.r.t. the degree and the neighborship.

• Let X2 denote the vertices of degree  2.

• Let Y4 denote the vertices of degree � 4.

• Let X3 denote the vertices of degree exactly 3 but with at least one neighbor of degree  3.

• Let Y3 denote the vertices of degree exacly 3 but with all neighbors having degree > 3
(degree 3 vertices not in X3).

Let x2,x3,y3 and y4 denote the cardinality of the sets, respectively.

Let |V | = n. For a vertex starting in X2, by two agents we protect the neighbors and safe n� 2
vertices. For a vertex in X3, we save two neighbors so that the fire spreads to the neighbor u of
degree  3 and in the next step we protect the remaining neighbors of u, thus protecting n� 2
vertices in total. For starting vertices in Y3 and Y4, we assume that we can save no vertex.

We have to show that 1
n

P
v2V sn

k

(G, v) � ✏ · n holds and we consider

s2(G) =
1

n2

X

v2V
sn

k

(G, v) � 1

n2
(x2 + x3)(n� 2) =

n� 2

n
· x2 + x3
x2 + x3 + y3 + y4

(4.2)

since x2 + x3 + y3 + y4 = n holds.

We first would like to compute a correspondance between Y3 and Y4 and consider the graph
G

Y

= (V
Y

, E
Y

) that consists of the edges of G with precisely one vertex in Y3 and one vertex
in Y4. The graph G

Y

has precisely 3y3 edges and at most y3 + y4 vertices. Note that some of
the vertices of Y4 might be neighbors for more than one vertex of Y3. The graph G

Y

is bipartite
and a subgraph of G. A cycle of size 5 has to go forth and back from Y3 to Y4 vertices and
has to end at the same class Y4 or Y3. Therefore in G

y

we only have cycles of size at least 6
and by Exercise 18 the average degree of vertices of G

Y

is at most 3. This means by counting
3(y3 + y4), we have counted at least any edge twice, which gives 3(y3 + y4) � 6y3 and y3  y4.

Now we would like to compute a fixed relation between x2 + x3 and y3 + y4. By the average
degree, by counting 10

3 (x2 + x3 + y3 + y4) edges we have at least counted 3x3 + 3y3 + 4y4 edges,
which gives 9x3 + 9y3 + 12y4  10(x2 + x3 + y3 + y4) and in turn 2y4 � y3  10x2 + x3. By
y3  y4 we have y4  10x2 + x3 and also y3 + y4  20x2 + 2x3  20(x2 + x3).

Now insertion into Equation 4.2 gives

s2(G) � n� 2

n
· x2 + x3
x2 + x3 + y3 + y4

� n� 2

n
· x2 + x3
21(x2 + x3)

=
n� 2

21n
. (4.3)

If G has only two vertices, in any case the vertex distinct from the root can be saved. If G hat
3  n  44 vertices, at least 2

44 are saved in a single step. For n � 44 we have s2(G) � 42
21·44 = 1

22 .
So the expected value of saved vertices is always 1

22n. 2
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Exercise 18 Prove by the Euler formula that a graph with no 3-, 4-cycle and 5-cylces has
average degree less than three.

Finally, we would like to prove the statement ↵n(C)  4 of Theorem 42. To this end we prove
the following result with a precise value of s4(G) for planar graphs.

Theorem 44 Using four firefighters in the first step and then always three firefighters in each
step, for every planar graph G there is a strategy such that s4(G) � 1

2712 holds.

Proof. We can assume that G is a maximal planar graph. Inserting more edges will only help
the fire. This means that G is a triangulation. We can also assume that G is simple, has no
multiedges and any face has exactly three edges.

We provide the proof in several steps. Similarily, to the proof above we subdivide the vertices
V of G into sets X and Y . Where X will be the set of vertices where a strategy saves at least
n� 6 vertices and for Y we do not expect to save any vertex, for |V | = n.

The final conclusion is that for some ↵ = 1
872 we will conclude

|Y | 
✓
93 +

3

↵

◆
|X| = 2709|X| . (4.4)

Thus from |X|+ |Y | = n and Equation 4.2 we conclude

s4(G) � n� 6

n
· |X|
|X|+ |Y | >

n� 2

n
· |X|
2710|X| =

n� 6

2710n
. (4.5)

For n � 10846 we have

s4(G) � 1

2710
� 6

4 · 27102 � 2710� 3/2

27102
� 1

2712

For 2  n < 10846 we save at least min(4, n� 1) in the first step, which gives also s4(G) � 1
2712 .

The remaining task is, to establish the above bounds. First, we subdivide the vertices accord-
ingly. Note that for starting vertices of degree 3 or four we can save n � 1 vertices in the first
step.

• For degree 3  d  6 let X
d

denote the vertices that guarantee to save at least |V | � 6
vertices.

• All other vertices form the set Y
d

for d � 5.

Also note that a starting vertex v of degree 5 with a neighbor u of degree at most 6 is in X5.
Because of the triangulation u and v have two common neighbors n1 and n2 . In the first step,
we let the fire only spread to u by protecting 4 neigbors at u. Then the neighbors v, n1 and n2

of u are already protected. So we fully protect the graph in the next step by 3 agents.

We require some more structural properties for the relationsship between X and Y which stem
from the triangulation. The length of a path in the graph is given by the number of edges.

Lemma 45 For a vertex v 2 Y6 there is a path of length at most 3 from v to a vertex u that
has degree distinct from v (i.e., 6= 6) and the inner vertices of the path have degree exactly 6.
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Proof. Let us assume that this is not the case. In the first step we can always protect 4
subsequent neighbors of v as depicted in Figure ??. If one of the remaining two neighbors (step
1) does not have degree 6, we are done. So assume that also these two neigbors have degree
6. Because of the triangulation, they will span a hexagon and we can protect 3 neighbors of
these two as depicted in Figure ??. The fire spread to only two remaining neighbors (step 2).
If one of them does not have degree 6 we are done again. So assume that both also have degree
6 and we extend the hexagonal grid. We can protect the neighbors by three agents as depicted
in Figure ?? and only one vertex remains on fire after the fire spreads (step 3). If this vertex
does not have degree 6 we are done again. But if this vertex also have degree 6 we will finally
enclose the fire in the next step and only 6 vertices (v, 2 in (step 1), 2 in (step 2), 1 in (step3))
gets burned in total, a contradiction to v 2 Y6. Without the above property, v will be in X5! 2

The next lemma tells us something about vertices from Y
d

with d � 7 related to y5. Let d(v)
denote the degree of vertex v.

Lemma 46 A vertex with d(v) � 7 has at most b12d(v)c neighbors in Y5.

Proof. A neighbor u of v from Y5 has two neighbors n1 and n2 in common with v. If one of
them has degree strictly less than 7, the vertex u belongs to X5. So the vertices from Y5 around
v are seperated by vertices of degree � 7, which gives the bound. 2

Finally, we make use of the following structural lemma that stems from the Euler formula and
the simple, maximal planar triangulation.

Lemma 47 Foir a simple, maximal planar graph we have

X

v2V
(d(v)� 6) = �12 . (4.6)

Proof. For a maximal, simple planar graph we have 3f = 2e, counting the edges of every
triangle face, counts any edge exactly. Additionally, we have

P
v2V d(v) = 2e because summing

up the degree of the vertices counts any edge twice. The Euler formula says v � e+ f = 2 and
we conclude v � e+ 2

3e = 2 () 2e� 6v = �12 which gives the conclusion. 2

Now we present the main idea for obtaining Equation . The idea is that we distribute the intitial
potential p1(v) := (d(v) � 6) of every vertex among the others so that finally any vertex has
potential p2(v) and also

P
v2V p1(v) =

P
v2V p2(v) = �12 holds.

The rules for the distribution are as follows:

Rule A: A vertex v of degree at least 7 gives a value of 1
4 to each neighbor vertex from Y5.

Rule B: For a vertex v 2 Y6 we choose exactly one vertex u with d(u) 6= 6 and distance
d(v, u)  6 as in Lemma 45. The vertex u gives a value of ↵ > 0 to v.

We would like to choose ↵ accordingly, so that the above property
P

v2V p1(v) =
P

v2V p2(v) =
�12. Such a distribution exists and it has a desired property.

Lemma 48 There is a constant ↵ > 0 such that
P

v2V p1(v) =
P

v2V p2(v) = �12 holds and
for every v 2 X we have p2(v) > �3� 93↵ and or every v 2 Y we have p2(v) � ↵

Before we prove this final lemma, we use its conclusion. An ↵ = 1
872 will do the job. We then

conclude
�12 =

X

v2V
p2(v) � (�3� 93↵)|X|+ ↵|Y |
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and this gives

|Y | 
✓
93 +

3

↵

◆
|X| < 2790|X|

which is Equation. It remains to prove Lemma 48. 2

Exercise 19 Present the precise strategies that stem from Theorem 43 and Theorem 44. Anal-
yse the corresponding running time.
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