Theoretical Aspects of Intruder Search

Course Wintersemester 2015/16 Escape Paths for the Intruder

Elmar Langetepe

University of Bonn

January 18th, 2016

Elmar Langetepe Theoretical Aspects of Intruder Search

Reverse Situation

- Take over the position of the intruder
- Try to escape from an partially unknown environment
- The adversary manipulates the environment
- Leaev the area as soon as possible
- Lost in a forest Bellman 1956
- Escape paths for region R
- Single deterministic path
- Leave area from any starting point
- Adversary translates and rotates R
- Minimize the length of successful path
- Geometric argumentations
- Only known for few shapes

Simple examples

Obviously: The diameter of any region R is always an escape path!

Theorem 68: The shortest escape path for a circle of radius r is a line segment of length 2r.

Also for semicircles

Theorem 69: The shortest escape path for a semicircle of radius r is a line segment of length 2r.

Theorem 70: The shortest escape path for rhombus of diameter L with angle $\alpha = 60^{\circ}$ is a line segment of length L.

Fatness definition!

Definition: Fatness w.r.t. diameter! Rhombus-Fat!

Corollary: The shortest escape path for rhombus-fat convex set of diameter L is a line segment of length L.

- Equilateral triangle: Besicovitch
- \bullet Zig-Zag escape path with length ≈ 0.9812
- More generally from Coulton and Movshovich (2006)
- \bullet Isosceles triangle for α and \textit{b}_{α}

• b_{α} is diameter!

- Construct symmetric Zig-Zag path of small length
- Asssume length 1.

• Extract triangle

•
$$\frac{1}{x} = \frac{b_{\alpha}}{1} x = \frac{1}{b_{\alpha}}$$

5900

3

Further constraint for α

There should be no better Zig-Zag path for T_{α} ! Line $L_3 : Y = \tan(2\alpha)$ runs in parallel with L_2 . This means $-3\tan\alpha = \tan 2\alpha$ or $\tan\alpha = \sqrt{\frac{5}{3}}$.

Elmar Langetepe Theoretical Aspects of Intruder Search

Theorem 71: For any $\alpha \in [\arctan(\sqrt{\frac{5}{3}}), 60^{\circ}]$ there is a symmetric Zig-Zag path of lenght 1 that is an escape path of T_{α} smaller than the diameter b_{α} .

•
$$b_{\alpha} = \sqrt{1 + \frac{1}{9 \tan^2 \alpha}}$$

• $\alpha = 60^{\circ}$: $b_{\alpha} = \sqrt{\frac{28}{27}}$
• $b_{\alpha} := 1 \Longrightarrow \sqrt{\frac{27}{28}} < 1$ is Zig-Zag path length
• Optimality? York

Optimality? Yes!

Different performance measures

- Set L_m of m line segments s_i of unknown length $|s_i|$
- Dark corridors, escape, digging for oil
- Test corridors successively
- s_{j_1} up to a certain distance x_1 , then s_{j_2} for another distance x_2 and so on

More information

- Assume distribution is known!
- $f_1 \geq f_2 \geq \cdots \geq f_m$ order of the length given
- Extreme cases! Good strategies!

More information

- $f_1 \ge f_2 \ge \cdots \ge f_m$ order of the length given
- Check *i* arbitrary segments with length *f_i*: min_{*i*} *i* · *f_i* is the best strategy

