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Cop and Robber Game in a graph

Graph G = (V ,E )

Set the cop on a vertex

Set the robber on a vertex

Move alternatingly, try to visit robbers position

Cop and Robber game for graphs:
Instance: A Graph G = (V ,E ) and the cardinality of the cops C .
Question: Is there a winning strategy S for the cops C?
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Active and passive

Active version: Robbers has to move in each step!
Makes a difference!

v1 v2

r1 r2

v
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Classification and pitfalls

Classes GR and GC for winning of cop or robber

Situation at the end, single cop, GC

A pitfall for the robber

Definitions

For a pair (vr , vc) of vertices we call vr a pitfall and vc its
dominating vertex if N(vr ) ∪ {vr} ⊆ N(vc) holds. Obviously, a
graph G whithout a pitfall is in GR .
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Graph without pitfalls

Graphs without pitfalls cannot have a winning strategy for the cop.
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Algorithmis approach

Successively, remove pitfalls is an algorithmic approach!

Lemma 31: Let vr be a pitfall of some graph G . Then

G ∈ GC ⇐⇒ G \ {vr} ∈ GC

Proof:
1. G \ {vr} ∈ GR =⇒ G ∈ GR (pitfall by cop = dom vertex by cop)
2. G \ {vr} ∈ GC =⇒ G ∈ GC (pitfall by robber = dom. vertex by
robber)
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Algorithmis approach

Successively, remove pitfalls is an algorithmic approach!

Theorem 32: The graph G is in GC , if and only if the successive
removement of pitfalls finally ends in a single vertex. The
classification of a graph can be computed in polynomial time.

Proof:
Lemma 31, remove a pitfall.
Detect a pitfall in polynomial time.
Example!
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Arbitrary representatives

Product G1 × G2 of two graphs G1 = (V1,E1) and G2 = (V2,G2)
Vertex set V1 × V2

Edges set: (v1, v2) and (w1,w2) of V1 × V2 build an edge if:

1 v1 = w1 and (v2,w2) ∈ E2 or

2 (v1,w1) ∈ E1 and v2 = w2 or

3 (v1,w1) ∈ E1 and (v2,w2) ∈ E2.

Example!
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Arbitrary representatives, Product

Lemma 33: If G1,G2 ∈ GC , then G1 × G2 ∈ GC

Proof:
Winning strategy for G1 that starts in v s1 and catches the robber in
v e1 and G2 that starts in v s2 and catches the robber in v e2 .
Cop can start in (v s1 , v

s
2 ) apply the strategies simultaneously and

finally catches the robber in a vertex (v e1 , v
e
2 ).
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Arbitrary representatives, Retraction

Graph G and subgraph H

Retraction from G to H

Mapping ϕ : V (G ) 7→ V (H)

ϕ(H) = H for (u, v) ∈ E we have (ϕ(v), ϕ(u)) ∈ E (H)

Graph H is a retract of G , if a retraction from G to H exists.

Note that G \ {vr} for a pitfall vr is a retract of G . ϕ(vr ) = vc .
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Arbitrary representatives, Product

Lemma 34: If G ∈ GC , and graph H is a retract of G , then
H ∈ GC .

Proof:

Assume H ∈ GR , ϕ mapping of retraction

Winning strategy for H exists, extend to G

R remains in H and identifies the moves of C in G as moves
in H.

C moves from v to u in G , the robber indentifies this move as
a move from ϕ(u) to ϕ(w) which exists in H by definition of ϕ

G ∈ GR

Theorem 35: The class of graphs G in GC is closed under the
operations product and retraction.
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Number of cops required

Graph G with 4-cycle, one cop, G ∈ GR

c(G ), minimal number of cops required

Vertex-Cover: Vc ⊆ V so that any vertex u ∈ V \ Vc has a
neighbor in Vc .

Minimum vertex cover is an upper bound on c(G ).

c(G ) can be arbitraily large for some graphs
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Number of cops required, negative results!

Theorem 36: Let G = (V ,E ) be a graph with minimum degree n
that contains neither 3- nor 4-cycles. We conclude c(G ) ≥ n.

Proof:

Assume that n − 1 cops are sufficient

Assume no vertex cover of size < n

c1, . . . , cn−1 starting positions

Safe position for the robber, 2 steps away exists

Next move of the cops

No cop can threaten (occupy/be adjacent to) two neighbors
of the robber, no such cycles

Still one neigbor is safe!

Show that no vertex cover of this size exists
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Number of cops required, negative results

Theorem 36: Let G = (V ,E ) be a graph with minimum degree n
that contains neither 3- nor 4-cycles. We conclude c(G ) ≥ n.

Proof:

No vertex cover of size n − 1.

Vertex set V = {v1, . . . , vn−1} of G

w 6= vi for i = 1, . . . , n − 1 exists

N(w), of w : k vertices v1, . . . , vk from V and
l − k vertices w1, . . . ,wl−k not in V

We have l ≥ n, k ≤ n − 1 and l − k ≥ 1

No 3- and 4-cycles, N(wi ) ∩ N(wj) has to be {w} for i 6= j

None of the N(wi )s can contain a vertex of v1, . . . , vk , since
this would give a 3-cycle with w

If the set V is a vertex cover for G , any N(wi ) has to contain
a different vertex from V .

We require l − k different vertices from vk+1, . . . , vn−1 and n
vertices from V in total, a contradiction.
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Number of cops required, negative results

Theorem 37: For every n there exists a graph without 3- or
4-cylces with minimum degree n. So, for any n there is a graph
with c(G ) ≥ n.

Proof:
By induction!

n = 2 the simple 5-cycle

3-colorable and degree ≥ n. At least n agents

From n to n + 1!
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Number of cops required, negative results

Theorem 37: For every n there exists a graph without 3- or
4-cylces with minimum degree n. So, for any n there is a graph
with c(G ) ≥ n.

Proof: Inductive step! Four copies!

3(1) 3

3(2)

2

2

2(3)

2(1)

3
1

1

1(2)1(3)
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Number of cops required, positive result

Theorem 38: Consider a graph G with maximum degree 3 and
the property that any two adjacent edges are contained in a cycle
of lenght at most 5. Then c(G ) ≤ 3.

Proof:

Position of the robber

Build paths P1, P2 and P3 from c1, c2, c3 to adjacent edges

Always move closer!

P1 = {c1, . . . , r1, r}, P2 = {c2, . . . , r2, r} and
P3 = {c3, . . . , r3, r}
l = l1 + l2 + l3, decrease!
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Number of cops required, positive result

Theorem 38: Consider a graph G with maximum degree 3 and
the property that any two adjacent edges are contained in a cycle
of lenght at most 5. Then c(G ) ≤ 3.

Proof:

1 R stands still. Cops move toward R and l ′ ≤ l − 3.

2 The robber R moves to r1 w.l.o.g.

r1 has degree 1: Cannot happen, because of (r , r1) and (r , r2)
are adjacent ( 5 cycle!).

r1 has degree 2: Either c1 was on r1 and we are done or move
all three cops toward r which gives
l ′ ≤ l1 − 2 + l2 + l3 = l − 2 < l .
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Number of cops required, positive result

Theorem 38: Consider a graph G with maximum degree 3 and
the property that any two adjacent edges are contained in a cycle
of lenght at most 5. Then c(G ) ≤ 3.

r1 has degree 3: Situation as follows! Use the paths
P1 = {c ′1, . . . , r1} P2 = {c ′2, . . . , r2, y , x , r1} and
P3 = {c ′3, . . . , r3, r , r1} with length
l ′ ≤ l1 − 2 + l2 + 1 + l3 = l − 1 < l ′.

r

P1

r1

r2
r3

c1

c2
c3

P2

P3

x

y
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Number of cops required, positive result

Theorem 40: For any planar graph G we have c(G ) ≤ 3.

Proof:

Two cops protect some paths, the third cop can proceed!

c2

v1

P2P1
c1

v2

Ri
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Number of cops required, positive result

Lemma 39: Consider a graph G and a shortest path
P = s, v1, v2, . . . , vn, t between two vertices s and t in G , assume
that we have two cops. After a finite number of moves the path is
protected by the cops so that after a visit of the robber R of a
vertex of P the robber will be catched.

Move cop c onto some vertex c = vi of P

Assuming, r 6= vi closer to some x in s, v1, . . . , vi−1 and some
y in vi+1, . . . , vn, t. Contradiction shortest path from x and y

d(x , c) + d(y , c) ≤ d(x , r) + d(r , y)

Move toward x , finally: d(r , v) ≥ d(c , v) for all v ∈ P

Now robot moves, but we can repair all the time

r goes to some vertex r ′ and we have
d(r ′, v) ≥ d(r , v)− 1 ≥ d(c , v)− 1 for all v ∈ P .

Some v ′ ∈ P with d(c , v ′)− 1 = d(r ′, v ′) exists, move to v ′
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