Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Geometric Firefighting Plane

Elmar Langetepe
University of Bonn

December 15th, 2015

Geometric firefigthing in the plane

- Expanding fire in the plane
- Barrier curve with speed $v>1$
- Current point outside the fire

Geometric Firefighter Problem in the plane
Instance: Expanding fire-circle spreads with unit speed from a given starting point s, start radius A.
Ouestion: How fast must a firefighter be, to build a barrier that finally fully encloses and stops the expanding fire?

Spiral movements for speed v

Spiral movements for speed v

- Start on the boundary, speed $v>1$

Spiral movements for speed v

- Start on the boundary, speed $v>1$
- Allowed angle?

Spiral movements for speed v

- Start on the boundary, speed $v>1$
- Allowed angle?

Spiral movements for speed v

- Start on the boundary, speed $v>1$
- Allowed angle?

Spiral movements for speed v

- Start on the boundary, speed $v>1$
- Allowed angle?
- Riding the fire

Spiral movements for speed v

- Start on the boundary, speed $v>1$
- Allowed angle?
- Riding the fire
- Log. Spiral around Z
- Excentricity α $\cos (\alpha)=\frac{1}{v}$

Properties of a spiral

- Polar coordinates $S(\varphi):=\left(\varphi, a \cdot e^{\varphi \cot \alpha}\right)$
- Constant a
- $\alpha \in(0, \pi / 2), \cot \alpha$ from 0 to ∞
- $\left|S_{q}^{p}\right|=\frac{1}{\cos \alpha}(|B q|-|B p|)$

Spiralling strategy, upper bound on the speed

Bresson et al. 2008

- Spiral was constructed
- Let the fire expand
- Follows to current point D
- Speed difference?
- $\gamma(\beta)=: \gamma$
- $\overline{O C}=a$

$$
\frac{a \cdot e^{(2 \pi+\gamma) \cot \beta}}{\sin \beta}=\frac{a}{\sin (\beta-\gamma)} \Longleftrightarrow e^{(2 \pi+\gamma) \cot \beta}=\frac{\sin \beta}{\sin (\beta-\gamma)} .
$$

Spiralling strategy, upper bound on the speed

$$
\begin{aligned}
& f(\beta):=\frac{\text { |Length spiral from } O \text { to } D \mid}{\mid \text { Length spiral from } O \text { to } C|+| \text { Length segment } C D \mid} \\
& f(\beta)=\frac{\frac{1}{\cos \beta} e^{(2 \pi+\gamma) \cot \beta}}{\frac{1}{\cos \beta}+\frac{\sin \gamma}{\sin \beta} e^{(2 \pi+\gamma) \cot \beta}}=\frac{\frac{1}{\cos \beta} \frac{\sin \beta}{\sin (\beta-\gamma)}}{\frac{1}{\cos \beta}+\frac{\sin \gamma}{\sin \beta} \frac{\sin \beta}{\sin (\beta-\gamma)}}=\frac{1}{\cos \gamma}
\end{aligned}
$$

Properties of $f(\beta)$

$$
\begin{gathered}
f(\beta)=\frac{\frac{1}{\cos \beta} e^{(2 \pi+\gamma) \cot \beta}}{\frac{1}{\cos \beta}+\frac{\sin \gamma}{\sin \beta} e^{(2 \pi+\gamma) \cot \beta}}=\frac{1}{\cos \gamma} . \\
\lim _{\beta \mapsto 0} f(\beta)=\lim _{\gamma \mapsto 0} \frac{1}{\cos \gamma}=1 .
\end{gathered}
$$

$\limsup _{\beta \mapsto \pi / 2 \nearrow} f(\beta) \leq \limsup _{\beta \mapsto \pi / 2 \nearrow} e^{(2 \pi+\gamma) \cot \beta} \leq \lim _{\beta \mapsto \pi / 2 \nearrow} e^{(5 \pi / 2) \cot \beta}=1$.

Properties of a spiral

- Maps to 1 at the boundary
- $\gamma(\beta)$ continuous, well-defined, \boldsymbol{f} continuous, well-defined
- Unique global maximum: $v_{l}:=\max _{\beta \in(0, \pi / 2)} f(\beta)$.
- Numerically: $\beta_{I}=1.29783410242 \ldots$ and gives

$$
v_{l}=f\left(\beta_{l}\right)=2.614430844 \ldots \text { and } \gamma\left(\beta_{l}\right)=1.178303978 \ldots
$$

Construct strategy with speed $v>v_{l}=2.614430844 \ldots$

- For any speed $v>v_{l}$ spiral keeps in front of fire
- Use $v_{1}=\frac{1}{\cos \beta_{1}}>v_{l}$ and spiral with excentricity β_{1}

Construct strategy with speed $v>v_{l}=2.614430844 \ldots$

- Use $v_{1}=\frac{1}{\cos \beta_{1}}>v_{l}$ and spiral with excentricity β_{1}
- Make it a legal start spiral: β_{1} helps for starting!!!
- Starting circle construction:
- $v^{\prime}=\frac{1}{\cos \beta^{\prime}}$ with $v_{1}>v^{\prime}>v_{l}$
- F is met $t_{1}=t \cos \beta_{1}$, $t_{2}=t \cos \beta^{\prime}>t_{1}$
- $x=t\left(\frac{1}{\cos \beta_{1}}-\frac{1}{\cos \beta^{\prime}}\right)$ time from N to D for the fire

Construct strategy with speed $v>v_{l}=2.614430844 \ldots$

- $x=t\left(\frac{1}{\cos \beta_{1}}-\frac{1}{\cos \beta^{\prime}}\right)$ time from N to D
- Use x for the start
- $\frac{1}{\cos \beta^{\prime}}\left(\epsilon_{1}+\epsilon_{2}\right)-\epsilon_{2}<x$
- Speed $v_{1}=\frac{1}{\cos \beta_{1}}>v^{\prime}>v_{l}$ helps
- Angle β_{1} helps!

Construct strategy with speed $v>v_{l}=2.614430844 \ldots$

- For any $v_{1}=\frac{1}{\cos \beta_{1}}>v_{l}$
- Admissable spiral, starting radius $C_{1}=\left(\epsilon_{1}+\epsilon_{2}\right)$, excentricity β_{1}

2. Enclosement by iterations

- $F=\left(e^{2 k_{1} \pi \cot \beta_{1}}, 0\right)$ with excentricity $\beta_{2}>\beta_{1}$
and starting radius $C_{2}=C_{1} e^{2 k_{1} \pi \cot \beta_{1}}$
- Admissable, if $\beta_{2}>\beta_{1}$ close to β_{1}.

2. Iteration

- Spiral with β_{2} until angle $2 k_{2} \pi$
- F_{2} and the fire is behind at D_{2}
- $\beta_{1}<\beta_{2}<\ldots<\beta_{I}$ and spirals $C_{i} e^{2 \pi k_{i} \cot \beta_{i}}$

2. Many iterations $\beta_{m}>\beta_{m-1}>\cdots>\beta_{1}$

$$
\frac{1}{\cos \beta_{m}}>\frac{1}{\cos \beta_{1}}\left(\frac{1}{\cos \beta_{m}} e^{2 \pi \cot \beta_{m}}+\left(e^{2 \pi \cot \beta_{m}}-1\right)\right)
$$

- $\frac{1}{\cos \beta_{m}} e^{2 \pi \cot \beta_{m}}$ and $e^{2 \pi \cot \beta_{m}}-1$
- Versus $\frac{1}{\cos \beta_{m}}$ (scaling!)

2. Many iterations $\beta_{m}>\beta_{m-1}>\cdots>\beta_{1}$

$$
\frac{1}{\cos \beta_{m}}>\frac{1}{\cos \beta_{1}}\left(\frac{1}{\cos \beta_{m}} e^{2 \pi \cot \beta_{m}}+\left(e^{2 \pi \cot \beta_{m}}-1\right)\right)
$$

- Example. $\beta_{1} \approx 1.191388 \ldots$ and $\frac{1}{\cos \beta_{1}}=2.7$ we require $\beta_{m}>1.4268$.

2. Many iterations $\beta_{m}>\beta_{m-1}>\cdots>\beta_{1}$

Theorem 56: (Bresson et al. 2008) For any speed $v>v_{l} \approx 2.614430844$ there is a spiralling strategy that finally encloses an expanding circle that expands with unit speed.

Lower bound construction, spiralling strategies!

- Start at the fire!
- Spiralling strategies!
- Visit four axes in cyclic order
- Visit axes in increasing distance

Theorem 58: Each "spiralling" strategy must have speed $v>1.618 \ldots$ (golden ratio) to be successful.

Proof of lower speed bound: suppose $v \leq 1.618$

By induction:
On reaching p_{i}, interval of length A below p_{i-1} is on fire.
(Induction base!)

Proof of lower speed bound: suppose $v \leq 1.618$

Inductive Step:
After arriving p_{i+1}
fire moves at least $x+A$

Proof of lower speed bound: suppose $v \leq 1.618$

Inductive Step:
After arriving p_{i+1}
fire moves at least $x+A$

Proof of lower speed bound: suppose $v \leq 1.618$

On reaching p_{i+1} :

1. $A+\frac{x}{v} \leq p_{i} \leq x$ and
2. $A+\frac{x}{v}+\frac{y}{v} \leq p_{i+1} \leq y$
$\Longrightarrow \frac{1}{v(v-1)} x+\frac{1}{v-1} A \leq \frac{y}{v}$
$\Longrightarrow x+A \leq \frac{y}{v}$
from $v^{2}-v \leq 1$
