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Abstract

The two-watchman route problem is that of comput-
ing a pair of closed tours in an environment so that
the two tours together see the whole environment and
some length measure on the two tours is minimized.
Two standard measures are: the minmax measure,
where we want the tours where the longest of them
has minimal length, and the minsum measure, where
we want the tours for which the sum of their lengths
is smallest. It is known that computing the minmax
two-watchman route is NP-hard for simple rectilinear
polygons and thus also for simple polygons. We ex-
hibit a polynomial time 7.1416-factor approximation
algorithm for computing the minmax two-watchman
route in simple polygons.

1 Introduction

Some of the most intriguing problems in computa-
tional geometry concern visibility and motion plan-
ning in polygonal environments. A classical prob-
lem is that of computing a shortest watchman route

in an environment, i.e., the shortest closed tour
that sees the complete free-space of the environment.
This problem has been shown NP-hard [5] and even
Ω(logn)-inapproximable unless P=NP [7] for poly-
gons with holes having a total of n segments.

Watchman route algorithms either compute a fixed

watchman route which requires the tour to pass a
given boundary point or they compute a floating

watchman route, with no requirement to pass any
specific point. Tan et al. [11] prove an O(n4) time
algorithm based on dynamic programming for com-
puting a shortest fixed watchman route through a
given boundary point in a simple polygon. This is
later improved to O(n3 logn) time by Dror et al. [4].
Carlsson et al. [2] show how to generalize algorithms
for the shortest fixed watchman route to compute a
shortest floating watchman route in a simple polygon
with a quadratic factor overhead. Tan [10] improves
this to a linear factor overhead. Hence, the currently
best algorithm for a shortest floating watchman route
in a simple polygon uses O(n4 log n) time.
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The problem of computing multiple watchman
routes that together see the environment has received
much less attention. Mitchell and Wynters [8] show
that already computing the pair of tours that together
see a simple rectilinear polygon is NP-hard, if we
want to minimize the length of the longest of the two
tours, the minmax measure. It is still an open prob-
lem whether it is possible to compute a pair of tours
for which the sum of the lengths of the two tours is
minimal, the minsum measure, in polynomial time.
Packer [9] give some experimental results for multiple
watchman routes in simple polygons. In the case when
the watchmen are point sized, Belleville [1] shows an
efficiently computable characterization of all simple
polygons that are two-guardable with point guards.

We give a polynomial time 7.1416-factor approxi-
mation algorithm to compute a minmax pair of tours
that together see a simple polygon.

2 Preliminaries

Let P be a simple polygon having n vertices and let
∂P denote the boundary of P. We say that two points
in P see each other, if the line segment connecting the
points does not intersect the exterior of P. For any
connected object X inside P, we denote by VP(X )
the weak visibility polygon of X in P, i.e., the set of
points in P that see some point of X . VP(X ) when
X is a point, a segment, or a polygonal curve in P

can be efficiently computed [6].
We define a cut to be a directed line segment in P

with both end points on ∂P and having at least one
interior point not on ∂P. Hence, a polygon edge is
not a cut. A cut separates P into two sub-polygons.
If a cut is represented by the segment [p, q] we say
that the cut is directed from p to q and we call p the
start point of the cut. For a cut c in P, we let the left

polygon, L(c), be the set of points in P locally to the
left of c.

Assume a counterclockwise walk of ∂P. Such a walk
imposes a direction on each of the edges of P in the
direction of the walk. Consider a reflex vertex of P.
The two edges incident to the vertex can each be ex-
tended inside P until the extensions reach a boundary
point. These extended segments form cuts given the
same direction as the edge they are collinear to. We
call these cuts extensions.

A guard set is any set of points that together see
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all of P. Any guard set must have points intersecting
L(e) for every extension e of P, since otherwise the
edge collinear to e will not be seen by the guard set.
Chin and Ntafos [3] prove that this is indeed also a suf-
ficient requirement when the guard set is connected,
as it is for a shortest watchman route.

Let c be a cut. If a guard set G intersects L(c), we
say that c is covered by G. Furthermore, if G inter-
sects the interior of L(c), then G properly covers c. If
G properly covers c and intersects c, we say that G
crosses c. Finally, if G covers c, but does not properly
cover c, then G reflects on c.

For two cuts, c and c′, we say that c dominates c′,
if L(c) ⊆ L(c′) An extension that is not dominated
by any other extension is called essential. By the
transitivity of the domination relation, if a guard set
has points to the left of each essential extension, it
also has points to the left of every extension [3].

All exact watchman route algorithms for simple
polygons [2, 3, 4, 10, 11] compute closed tours that
cover every essential extension. They can also be used
with any set of cuts C to compute the shortest tour
that covers each cut in C, in polynomial time. We
call such a tour the shortest visiting tour of the cuts
in C inside P and denote it SVTC . For the case that
C consists of the essential extensions of P, the tour is
a shortest watchman route, WS.

We also make use of the fact that shortest paths in
P between combinations of segments and points can
be computed efficiently [6]. We denote the shortest
path between two objects X and Y in P by SP(X,Y ).

Let X1 and X2 be two closed polygonal cycles con-
tained in a simple polygon P, such that any point
in P sees some point on X1 or X2. We call such
a pair X = (X1,X2), a two-watchman route. The
length of a cycle X in P is denoted ||X || and we let

||X ||sum
def
= ||X1|| + ||X2|| be the sum length of X and

||X ||max

def
= max{||X1||, ||X2||} be the max length of X .

Let S = (S1, S2) and T = (T1,T2) be two two-
watchman routes such that ||S||sum ≤ ||X ||sum and
||T ||max ≤ ||X ||max for any two-watchman route X in P.
We say that S is a minsum two-watchman route and
T is a minmax two-watchman route. The following
inequalities are immediate from the definitions,

||T ||max ≤ ||S||sum ≤ 2||T ||max.

3 Approximating a Minimum Two-Watchman

Route

Our algorithm is illustrated in pseudo-code in Fig-
ure 1 and we show that it approximates a minmax
two-watchman route.

The algorithm begins by running Belleville’s algo-
rithm [1] to establish if the polygon is guardable by
two point guards. If this is the case, it returns the
two point guards computed by the algorithm. Other-
wise, it computes, the set of essential extensions E , a

Algorithm Two-Watchman-Route

Input: A simple polygon P

Output: A two-watchman route WT that sees P

1 Run Belleville’s algorithm [1] to establish if the polygon is
guardable by two point guards. If this is the case, return
the two point guards computed by the algorithm

2 Compute the set of essential extensions E in P

3 Compute a shortest watchman route WS = SVTE in P

4 Let W∗

T := (WS,WS)

5 for every pair of extensions e1, e2 ∈ E, e1 6= e2 do

5.1 Compute the V-structure Ve1,e2
and establish its

bases q1 and q2

5.2 Let F1 := ∅ and F2 := ∅
5.3 for every boundary edge b = [v, v′] do

Compute the minimum tentacle pair Zmin

q1,q2
(b) =

Zr

q1,q2
(b) giving r on b

if b is a double edge (r 6= v, v′) then

Let c1 and c2 be the cuts through r and the
end points of Zmin

q1
(b) and Zmin

q2
(b)

Add c1 to F1 and c2 to F2

else /* b is a single edge (r = v or r = v′) */

if Zmin

q1
(b) sees b then

Let c and c′ be the cuts through v, v′ and
the end point of Zmin

q1
(b)

Add c and c′ to F1

else /* Zmin

q2
(b) sees b */

Let c and c
′ be the cuts through v, v′ and

the end point of Zmin

q2
(b)

Add c and c′ to F2

5.4 Compute the two tours WT = (SVTF1
, SVTF2

)

5.5 if ||WT||max < ||W∗

T ||max then W∗

T := WT

6 return W∗

T

End Two-Watchman-Route

Figure 1: The Two-Watchman-Route algorithm.

shortest watchman route WS and initializes the solu-
tion to be two copies of WS. The rest of this section
is devoted to showing how to implement Step 5 of the
algorithm.

We claim the following lemma without proof.

Lemma 1 If two tours in P see all of ∂P, then they

see all of P.

The lemma implies that it is sufficient to construct
two tours that see the whole boundary of P to guar-
antee that all of P is guarded.

There is a partitioning of the extensions in E into
nonempty subsets E1 and E2, such that each tour Ti of
a minmax two-watchman route covers the extensions
in Ei, i ∈ {1, 2}. We even have a stronger claim.

Lemma 2 Each tour Ti in a minmax two-watchman

route T = (T1,T2) intersects some extension in Ei.

Consider two tours X1 and X2 and a polygon
boundary edge b. We claim the following lemma.

Lemma 3 For any two tours X1 and X2 and a poly-

gon boundary edge b, the sets VP(Xi) ∩ b and

VP(X1) ∩VP(X2) ∩ b are each connected.

For a point q (or an extension e) in P and a (pos-
sibly point sized) subsegment sb of boundary edge b,
we call the shortest path from q (or e) to some point
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Figure 2: (a) A tentacle pair Zmin

q,q′
(b), (b) a jellyfish

pair Jq,q′ , (c) a minimum jellyfish pair Jmin

e1,e2
.

in P that sees all points of sb a tentacle from q (or e)
to sb , denoted Zq(sb)

(

or Ze(sb)
)

.
For a boundary segment b = [v, v′] and a point r

on b, we let b(r) be the subsegment [v, r] and b̄(r)
be the subsegment [r, v′]. For two points q and q′

and a point r on b, the tentacle pair that sees b

is the shorter of the pairs (Zq(b(r)),Zq′ (b̄(r))) and
(Zq(b̄(r)),Zq′ (b(r))). We denote this pair Zr

q,q′ (b) and
define its length to be the length of the longer of the
two tentacles in the pair.

For some point r∗ on b, it holds that ||Zr∗

q,q′(b)|| ≤
minr∈b{||Z

r
q,q′(b)||}. If r∗ is one of the end points of

b, one of the tentacles in the tentacle pair degenerates
into a single point q or q′. We denote this minimum
tentacle pair by Zmin

q,q′ (b). The two tentacles attached

to q and q′ are denoted Zmin
q (b) and Zmin

q′ (b) respec-
tively; see Figure 2(a); and we have that

||Zmin
u1,u2

(b)|| ≤ ||(T1,T2)||max/2, (1)

where u1 and u2 are intersection points of T1 and T2

with e1 and e2 respectively. The inequality holds since
T1 and T2 together see b.

For two points q and q′ in P, we call Jq,q′ =
{Zmin

q,q′ (b) | b ∈ ∂P} the jellyfish pair with origins
q and q′; see Figure 2(b). We define the length of a
jellyfish pair to be the length of its longest tentacle.

We define the bases along segments s and s′ to be
a pair of points (q∗, q

′
∗) = arg minq∈s,q′∈s′{||Jq,q′ ||},

i.e., two points q∗ on s and q′∗ on s′ where ||Jq
∗
,q′

∗
|| is

minimal. We denote the jellyfish pair Jq
∗
,q′

∗
by Jmin

s,s′ .
From this definition and (1), we have

||Jmin
e1,e2

||≤||Ju1,u2
||≤||(T1,T2)||max/2. (2)

We can select two longest tentacle pairs of Jmin
e1,e2

,

at least one pair of which attains the length ||Jmin
e1,e2

||.
The two tentacle pairs have two bases q1 on e1 and q2
on e2, one pair is the shortest tentacle pair Zmin

q1,q2
(b),

the other is the shortest tentacle pair Zmin
q1,q2

(b′), for
boundary edges b and b′. We call the two tentacle
pairs that attain the maximum length a V-structure
on e1 and e2, and denote it Ve1,e2 . The length of
Ve1,e2 is the length of its longest tentacle. From this
definition and (2) we have

||Ve1,e2 || = ||Jmin
e1,e2

|| ≤ ||(T1,T2)||max/2. (3)

The algorithm needs to find the two bases q1 on
e1 and q2 on e2. Therefore, the algorithm must de-
termine the two boundary edges b and b′, and the

two points r and r′ on b and b′ for which the maxi-
mum length of the V-structure is attained. Since we
do not know which pair of boundary edges produce
the V-structure that attains the length of Jmin

e1,e2
, we

try all possible pairs of boundary edges bi = [vi, v
′
i]

and bj = [vj , v
′
j ], 1 ≤ i ≤ j ≤ n in Step 5.1 of the

algorithm. We allow i = j to take care of the case
when the longest tentacle in Jmin

e1,e2
is unique.

In Step 5.1, we begin by computing Ze1(bi) and
Ze1(bj) as well as the two pairs Ze2(vi), Ze2(v′i) and
Ze2(vj), Ze2(v′j). Assume that Ze2(vi) and Ze2(vj) are
the shorter of the two tentacles in each pair.

We obtain the two points q and q′ on the extensions
e1 and e2 that minimize max{||Zq(bi)||, ||Zq(bj)||} and
max{||Zq′(vi)||, ||Zq′(vj)||}. We let two points ri on bi
and rj on bj slide independently, ri from vi to v′i and
rj from vj to v′j . We can express the position on e1 of
q and on e2 of q′ as functions of ri and rj , and hence
also the expressions max{||Zq(bi(ri))||, ||Zq(bj(rj))||}
and max{||Zq′(b̄i(ri))||, ||Zq′ (b̄j(rj))||}.

The difference between these two expressions is a
multivariate function Dij(ri, rj) on ri and rj that
locally only depends on the contact points of the
supporting segments for ri and rj and the corre-
sponding paths Zq(bi(ri)), Zq(bj(rj)), Zq′(b̄i(ri)), and
Zq′(b̄j(rj)), a total of at most eight polygon vertices.
We compute the values of ri and rj that produce the
minimum absolute value |Dij(ri, rj)| in all intervals
for ri and rj where the contact points do not change.1

As ri moves from vi to v′i, the supporting lines for ri
can change at most O(n) times and the same holds
for rj so in at most O(n2) time the minimum can be
obtained. We maintain the pair of bases q and q′ for
which the corresponding V-structure Ve1,e2 has maxi-
mum length. We denote these points by q1 and q2.

Given q1 and q2, we compute, in Step 5.3, the min-
imum tentacle pairs Zmin

q1,q2
(b) = Zr

q1,q2
(b) for every

boundary edge b = [v, v′], giving us the minimum
jellyfish pair on e1 and e2, Jmin

e1,e2
. If the expression

max{||Zmin
q1

(b)||, ||Zmin
q2

(b)||} is minimized for r = v
or r = v′, then b is a single edge, otherwise it is a
double edge. If b is a double edge, the point r and the
endpoint of Zmin

q1
(b) different from q1 defines a cut in

P that passes through the two points. The direction
of the cut is such that q1 does not lie to the left of
the cut and is added to the set F1. We also construct
the cut through r and the endpoint of Zmin

q2
(b) differ-

ent from q2. This cut is directed so that q2 does not
lie to the left of the cut and is added to the set F2.
The green segments in Figure 2(c) are the two cuts
for boundary edge b.

Similarly, if b is a single edge, it is seen by one of
Zmin

q1
(b) or Zmin

q2
(b). If it is seen by Zmin

q1
(b), the end-

points v and v′ of b together with the endpoint of

1We assume a real RAM computational model that allows us
to compute arbitrary algebraic functions and roots of algebraic
functions.
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Zmin
q1

(b) different from q1 define two cuts. The direc-
tion of the cuts are such that q1 does not lie to the
left of them and they are added to the set F1. If b is
seen by Zmin

q2
(b), we construct two cuts in the same

way and add these to F2.
To finalize, we let W1 = SVTF1

and W2 = SVTF2
,

two shortest visiting tours of the cut sets F1 and F2,
and return the pair (W1,W2) as our two-watchman
route.

Lemma 4 The tours (W1,W2) obtained by algo-

rithm Two-Watchman-Route form a two-watchman

route and ||(W1,W2)||max ≤ (π + 4)||(T1,T2)||max.

Proof. (Sketch) It follows from Lemma 1 and the fact
that the two tours together see every boundary edge
that they form a two-watchman route.

The algorithm computes the minimum jellyfish pair
Jmin
e1,e2

in the loop of Step 5.3. By trying all pairs of
extensions in Step 5, the algorithm must necessarily
consider a pair intersected by the tours T1 and T2;
see Lemma 2. Consider the tentacles attached to the
base q1 on e1. If we follow the shortest path from
each tentacle endpoint not on q1 to the next, cyclically
around q1, we obtain a tour U1 that visits every cut
in the set F1. Every tentacle has length at most R =
||(T1,T2)||max/2 by (2), hence U1 is inscribed in a circle
of radius R. Since ||W1|| ≤ ||U1||, the convex chains
of W1 together have length ≤ 2πR.

If T1 intersects T2, then ||WS|| ≤ ||T1|| +
||T2|| ≤ 2||(T1,T2)||max proving the lemma since
||(W1,W2)||max ≤ ||WS||.

If T1 does not intersect T2 and W1 has at most
four reflex chains, then ||W1|| ≤ 2πR+ 8R ≤ (π + 4) ·
||(T1,T2)||max.

If T1 does not intersect T2, W1 has at least five
reflex chains and W1 does not intersect T2, then use
the segments of W1 to cut P, thus partitioning P

into separate components. Let Q be the component
containing T2. The convex chain WC of W1 bounding
Q has length ≤ 2πR. The two reflex chains of W1

adjacent to WC have length ≤ 4R and the remainder
of W1 follows the same path as T1, giving us ||W1|| ≤
||T1|| + 4R + 2πR ≤ (π + 3)||(T1,T2)||max.

Finally, if W1 intersects T2, then use T2 to cut P,
partitioning it into components. Let Q′ be the com-
ponent containing T1. The intersection W ′

C = W1∩Q
′

follows the same path as T1, the two reflex chains of
W1 adjacent to W ′

C have length ≤ 4R and the remain-
ing reflex chains of W ′′

C = W1 ∩ (P \ Q′) follow T2.
The convex chains of W ′′

C
have total length ≤ 2πR

so we have ||W1|| ≤ ||T1|| + 4R + 2πR + ||T2|| ≤
(π + 4)||(T1,T2)||max.

We bound W2 similarly, proving the lemma. �

The analysis of the algorithm is straightforward.
The for-loop in Step 5 considers O(n2) pairs of exten-
sions. Computing Ve1,e2 takes O(n4) time by going

through all pairs of boundary edges. The work in
the remaining steps of the outermost for-loop is dom-
inated by the cost of computing the shortest visiting
tours in Step 5.4 taking O(n4 logn) time. Hence, the
total time complexity for the algorithm is O(n6 logn).

Theorem 5 The Two-Watchman-Route algorithm

computes a 7.1416-approximation of the minmax two-

watchman route in O(n6 logn) time.

4 Conclusions

Our algorithm relies heavily on the fact that for two
tours it is sufficient to guarantee that the boundary is
seen to ensure that the complete polygon is seen. This
does not hold for three or more tours. It is therefore
very possible that the problem is inapproximable for
three watchmen.

Establishing the complexity for the minsum two-
watchman route is still open although our algorithm
provides a polynomial 14.2832-approximation.

The authors would like to thank Pawe l Żyliński for
fruitful discussions.
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