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Abstract

Many variants of evolutionary algorithms have been designed and applied. The experimental
knowledge is immense. The rigorous analysis of evolutionary algorithms is di/cult, but such
a theory can help to understand, design, and teach evolutionary algorithms. In this survey, 0rst
the history of attempts to analyse evolutionary algorithms is described and then new methods
for continuous as well as discrete search spaces are presented and discussed. c© 2002 Elsevier
Science B.V. All rights reserved.

1. Some history of evolutionary algorithms

Evolutionary algorithms (EA) form a class of probabilistic optimization methods that
are inspired by some presumed principles of organic evolution. Whether such inspira-
tion is helpful or hampering, a neutral side aspect, or an opportunity to build bridges
between the islands of di5erent disciplines forming the cluster of human knowledge,
may be debated controversially, but not in this contribution. It is simply a matter of
fact that EA have become a welcomed tool for tackling the search for extrema, e.g.
optimal parameters within simulation models [79], that withstand classical approaches.
Subsequently mentioning only three spatially di5erent though nearly contemporaneous
sources (earliest traces go all back to the early 1960s, instead we cite some later but
better-known ones)
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• evolutionary programming (EP) [35]
• genetic algorithms (GA) [46]
• evolution strategies (ES) [70,78]
does not mean that there were not more inventors of the same or at least similar
ideas. Fogel [33] has made an attempt to collect a fossil record of the early birds
in the 0eld. This 0eld called evolutionary computation (EC) since members of the
three teams mentioned above met at conferences like Parallel Problem Solving from
Nature (PPSN) [82], International Conference on Genetic Algorithms (ICGA) [8], and
Evolutionary Programming (EP) [34], has got an accommodation in computer science
under the roof of computational intelligence (CI) or soft computing or bio-inspired or
natural computation together with two other 0elds, i.e. neural and fuzzy computation. A
series of three handbooks [7,30,76] as well as concurrent conferences every four years
since 1994 under the umbrella “World Congress on Computational Intelligence” [55,36]
may serve as witnesses of the broad interest this set of methods has gained, recently.
The general frame of EP, GA, and ES is essentially the same and very simply sum-

marized by a loop over partially randomized variation and selection operators steering
exploration and exploitation (or chance and necessity) and, in contrast to traditional op-
timization procedures, acting upon a set of search points in the decision variable space.
That is why some of the theoretical investigations mentioned later lead to results that
are valid for nearly all simple EA. Nevertheless, due to the di5erent origins, some fea-
tures of the “canonical” versions of the algorithms are quite speci0c, and some people
still speak of schools or demes that have emphasized or still emphasize their beloved
Gourish. Therefore, a few remarks seem appropriate about the three kindergartens. To
do this we use the popular nomenclature (see [18]). It should be intuitive enough so
that we do not need sophisticated de0nitions here for an individual (set of variables),
its 0tness (objective function value), or a generation (one iteration loop with � parents
and their � o5spring), etc.
Evolutionary programming (EP) was 0rst devised to let 0nite state machines become

more and more “intelligent by means of simulated evolution”. One or more out of a
couple of distinct small manipulations of the state diagram of a parent machine, i.e.
a (uniformly distributed random) mutation, o5ers an o5spring. Usually, each parent
creates one child. No recombination is applied. Selection takes place as a series of
tournaments (the pendant of the proverbial “struggle for life”) each with a subset
of the contemporary competitors. Those individuals earning highest scores, exactly
50%, enter the next generation. Later, Fogel [32] revised his father’s original EP in
di5erent ways, some of which resemble more or less the evolution strategies as used in
the case of real-valued parameter optimization. Not making use of recombination has
remained a “philosophical” distinction to all other EA (see [31]). We do not discuss
this further than mentioning that the evolving entities are thought of as species instead
of individuals—and by de0nition, species do not exchange genetic material=information.
Genetic algorithms (GA) initially served as simpli0ed models of organic evolution

in order to investigate adaptation capabilities that might be useful examples for other
disciplines, as well. Despite that older members of this school still today emphasize
that GA are no optimization methods, it is just that domain where they have earned ap-
preciation including money. The evolving entities are genomes carrying the phenotypic
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characteristics in coded form, usually making use of an alphabet with low cardinality,
on a digital computer consequently in binary form. The initial population is typically
generated by drawing all bits with same probability for zeros and ones (or pure random
setting within non-binary 0nite search regions). The main variation operator is recom-
bination, more precisely crossover, e.g. two-point crossover. In this case, the bitstrings
of two parents are cut at two random positions and put together by exchanging the
innermost parts between the parents, thus creating two o5spring at a time. Discussions
whether it is better to use both or only one of them, are still ongoing. Not all reproduc-
tions underlie recombination (canonically 30% not), so that some individuals are either
clones or survivors from the last generation. Mutation, i.e. Gipping a bit at this or that
position, has been introduced with low probability (e.g. 0.1%) to prevent that a small
population loses a still needed one or zero prematurely. In many applications, higher
mutation as well as crossover probabilities have become popular, e.g. 1=n as mutation
probability in case of a genome with n bits and one as crossover probability. Selection
takes place when the partners are drawn for recombination. Those who own higher
0tness values (in case of minimization of course those with lower objective function
values) are preferred. This may be done by ranking the individuals, or canonically,
by giving them a chance that is proportional to their (always positive, if necessary
transformed) 0tness.
Evolution strategies (ES) were devised as experimental optimization techniques, e.g.

to drive a Gexible device step by step into its optimal state. The 0rst experiments
were performed with just one ancestor and one descendant per generation and mu-
tations created by subtracting two numbers drawn from a binomial distribution. The
ancestor was replaced by its o5spring if the latter was not worse than the former. As
soon as computers became available, this two membered or (1+1)-ES was accom-
panied by the multimembered version with recombination. Now, � parents create �
o5spring within one reproduction cycle. Two or even more parents are involved in the
recombination step, two extreme forms of which are called discrete (or dominant) and
intermediate, respectively. In the case of intermediate recombination, the average of the
parental variable values is transferred to the o5spring, whereas discrete recombination
(like uniform crossover in GA) chooses each component from one of the parents at
random. No check is imposed that the parents involved are all di5erent, and there is
no mating selection, all parents have the same chance to be chosen. Additionally to
100% recombination, 100% mutation takes place with maximum entropy probability
distributions (geometrical for integer variables) or probability densities (normally dis-
tributed in case of continuous variables). If the parents for the next generation are
drawn from the o5spring only—this scheme is called (�; �)-ES—there must be a birth
surplus, obviously. Otherwise, all parents take place, too, in the (� + �)-ES, the ex-
treme form of which with �=1 is called “steady state”, as has been done with the
corresponding GA version. Selection is performed in a strictly deterministic manner
and has been called truncation selection, because except for the best � individuals all
others are discarded=forgotten. The so far best individual may be stored outside the
population, of course.
Both comma and plus selection schemes are the extremes of a more general (�; �;

�; �)-ES with � as upper limit of the number of reproduction cycles an individual is
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staying in the population and � as the number of parents involved in the recombination
step for each o5spring. The special notation of a (�=�; �)-ES stands for a comma
version with so-called multirecombination, i.e. inheriting to each descendant parameter
values that represent the average over � parents—the ultimate case being �= � in one
direction and �=1 (no recombination) in the other.

Other variants of these three early variants are now collected under the notion of
recombinant evolutionary algorithms (EA). Hundreds if not thousands of other incarna-
tions have been proposed and applied. A data base of US patents revealed 67 procedures
that bear the name GA in their headline—despite un0nished discussions about when
an EA is no longer a GA. For quite a while binary encoding of the decision variables
seemed to be a necessary ingredient—until real-coded GA entered the literature, (see,
e.g., [29]), even with deterministic truncation selection [60]. Due to the fact that prob-
ably more than 2000 articles are published annually since a couple of years (see [1]),
it is more likely than not that some features of the strategies are reinvented, probably
under di5erent names, and same names do not guarantee same features, respectively.
Some recently introduced crossover operators produce variations that are traditionally
expected under the name mutation.
Until recently, the number of rigorously proven facts about the behavior of EA

has been rather small. Nevertheless, there have been some strong beliefs upon which
decisions about choosing one or the other version have been taken. Some of them
turned out to be wrong, others are still unproven hypotheses or summaries of empirical
experience. Repeating arguments and counter-arguments from 0nished or still ongoing
discussions would 0ll too many pages and turn out as boring for the uninitiated. That
is why we restrict our report to only some, maybe called central, discussions of the
past and then turn to the presence, especially to most recent hard facts.
First analyses of the ES performance concentrated on the so-called progress velocity,

i.e. the average distance in the search space traveled in the useful direction per function
evaluation. This local measure was considered for the two-membered ES with uniform
random discrete mutations in the Moore neighborhood of the parent on an inclined
plane, a parabolic ridge, and a parabolic top with circular level lines. The useful direc-
tion in case of the inclined plane was the gradient direction, in case of the ridge the
straight line connecting the vertices of the parabolic level lines, and in case of the top
any reduction of the distance to the summit was considered as useful. Schwefel [77]
observed that such discrete mutations can lead to stagnation of the search somewhere
on the ridge and to a considerable decrease of the progress velocity when approaching
the hilltop. He proposed to use more versatile variation schemes with smaller as well as
larger mutations, e.g., according to a Gaussian probability density distribution with zero
mean and given standard deviation for each (continuous) variable. For such continuous
mutations Rechenberg [70] found asymptotic approximations of the progress velocity
of a two-membered ES on two model functions, a spherical model as the parabolic
top above and a corridor model, which resembles an n-dimensional rectangular ridge.
In both cases the progress rate (expected distance traveled per objective function call)
only depends on the number of variables, the standard deviation of the mutations (same
for all directions), and a topology parameter, i.e., the distance from the optimum in
case of the hypersphere or the corridor width (same for n− 1 perpendicular directions
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in the n-dimensional space) in case of the rectangular ridge. Dividing the progress
velocity and the standard deviation by the topology parameter and multiplying both
items with the number of variables, the formulas become simple relations between the
normalized progress rate and the normalized “mean step size” or square root of the
single mutation variance. This relation has a maximum that in both cases corresponds
to a success probability (the probability of replacing the parent by the o5spring) in the
vicinity of 20%. If the standard deviation is smaller than at this maximum, then the
success probability is higher, but the search is slower; if, however, the mean step size
is larger than optimal, both the progress rate and the success probability decline until
they vanish at in0nitely large mutations. At least 50% of the maximal progress rate can
be achieved within an “evolution window”, a range of about one decade concerning
values of the standard deviation.
The monotonicity of the success probability over the mutation strength has led to a

simple rule for adjusting the latter (1=5 success rule). This investigation was extended
by Schwefel [78,80] for multimembered ES with � descendants per generation and
just one parent, thus necessarily without recombination. Both the comma and the plus
versions were considered. The asymptotic approximations of the “universal” laws for
normalized progress velocity over normalized standard deviation are of same type as
above for all plus versions including �=1, but they di5er substantially in case of the
comma ES when the standard deviations exceed their optimal values by far. Negative
progress rates indicate divergence of the optimum-seeking process when the mutation
steps become too large. The maxima of the progress-rate curves increase sublinearly
with the number of descendants per generation and di5er vanishingly between plus and
comma strategies.
First empirical results about a positive inGuence of recombination on the expected

progress velocity of a (� + 1)-ES were obtained by Rechenberg [70] already. Thus it
is wondrous that more often than not people argue recombination to be a secondary
variation operator in ES (in contrast to GA, where mutations really were thought to
be of secondary importance for a long time).
Self-adaptation of the mutation strength(s) has been considered as of utmost impor-

tance from the very beginning of the ES history. Such a feature is an ingredient of all
classical optimization procedures. Whereas step size control in that domain relies on a
more or less sophisticated internal model of the (local) response surface (0tness land-
scape, otherwise) and a rational processing of the information usually gathered over a
series of iterations, a self-adaptive ES would have to consider the objective function
as a black box and to operate on less knowledge about its historical pathway (in case
of mostly haploid individuals with just one set of genes).
Early empirical investigations [78,80] led to the belief that under certain conditions

such self-adaptation without exogenous control can be achieved, but not under the
(� + 1)- or steady state scheme, because decreasing the mutation strength is always
rewarded via an increased success rate. The so-called mutative step-size control operates
with individuals that are not only characterized by their vector of object variables, but
additionally by one standard deviation used for creating the o5spring or even more
strategy parameters controlling mutations with more general normal probability density
distributions. A birth surplus seems indispensable in order to give the optimal mutation
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step size a chance to succeed within just one generation. This led to proposing ES
with �¿1, more generally with as many descendants as are necessary to allow at
least one descendant per parent that improves the objective function. Calling the ratio
�=� birth surplus or selection pressure, this ratio would have to be equal to or higher
than the inverse success probability corresponding to the optimal mutation strength
with maximal progress velocity. Even up to n di5erent step sizes for the n variables
could be envisaged under such premise—if � was not too small [81]. Dreams of
incorporating even more degrees of freedom of the normal distribution by introducing
the full correlation matrix with up to n(n− 1)=2 non-zero correlation coe/cients could
not be realized at that time to full extent due to a lack of computation power. Rudolph
[72] conjectured that Q(n2) individuals in an ES population might be necessary in
order to adapt so many strategic parameters representing the “internal models” of the
individuals’ environment.
Despite of enduring controversial discussions, Holland’s schema theorem [46] is still

a corner stone of the GA theory. A schema is a bitstring with one or more do not
care symbols “∗ ” and thus represents 2d di5erent bitstrings with d as number of the
“∗ ”. Holland expressed the expected number of o5spring representing some schema
after applying proportional selection, one-point crossover, and mutation in terms of
an inequality with the number of parents belonging to the same schema on the right
hand multiplied by three factors. The 0rst factor is the average 0tness of the parental
schema divided by the average of the whole population; this factor is thus greater than
one for above average parents (on the premise of diversity among the parents). Both
other factors are less than one and represent probabilities of harmful recombinations and
harmful mutations. The 0rst factor has been rewritten as 1+c, and by assuming c to be
a constant over several generations this has led to the belief of an exponential increase
of the number of above average 0t parental schemata. But c must vanish in approaching
an optimum, and the inGuence of the other factors, being detrimental, 0nally dominates
if the mutation and recombination probabilities do not vanish. Rudolph [74] found that
a canonical (non-elitist) GA 0nally Guctuates at a certain distance of the optimum,
because the best positions get lost again and again. This corresponds, by the way, to the
continuous Fisher–Eigen model and its 0ndings (see [54]). Neglecting improvements
by mutation and recombination, the schema theorem does not help in modeling the
progress velocity in terms of the so far best solution within a 0nite population.
Another strong belief concerning GA is the so-called building block hypothesis

(BBH, see [38]). It states that recombination, e.g. one-point crossover, often enables
to put together good parts of one parental bitstring with good other parts of the second
parent delivering an even better combination of both in an o5spring. Such argument
resembles in some way the situation in continuous search spaces where improving steps
in several independent directions can be superimposed with overall positive e5ect. But,
this happens only if the objective function is decomposable in some way and the
corresponding n independent directions can be found. Generally, such decomposable
objective functions are rarely given, and if so, n one-dimensional line searches su/ce
for 0nding the optimum. For a more detailed discussion see [40] and [74].
Finally, we can ask whether we really need EA, whether EA need features of or-

ganic evolution, or not. The second question may be answered by the infamous “yes
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and no”:—No, because any idea improving an algorithm to solve a given problem is
feasible, may it resemble biological prototypes or not. The best way to handle a given
problem would be the invention of a special method, even a best one if it exists. Its
goodness depends merely on our knowledge or ignorance of the problem’s character-
istics. —Yes, because otherwise the name of the method should be changed—or it
becomes deceptive. At least some researchers (like Holland) insist that EA are an in-
strument to learn about natural processes. The 0rst, even broader question presumably
does not lead to an answer which could be agreed upon by all people. Again, one might
call for special methods for special problems. But, not willing to spend enough time
to invent such special methods, practitioners are cast toward using existing methods
even if they are not optimal.
In the following two sections we present new methods how to analyze evolutionary

algorithms on continuous (Section 2) and discrete (Section 3) search spaces.

2. Methods for continuous search spaces and general convergence aspects

It is common belief that evolutionary optimization of real-valued objective functions
in Rn search spaces is a specialty of evolution strategies (ES). While there are indeed
state-of-the-art ES versions specially tailored for Rn supporting this belief, it is histor-
ically not correct (for the history see [17]). The appearance of special ES versions for
search in Rn may be regarded as a consequence of the theory: theoretical investiga-
tions on the behavior of EA in Rn search spaces have been done mainly in the 0eld
of ES. As to the other EA, there are only a few exceptions. Concerning real-coded
GA, the work of Qi and Palmieri [52] should be mentioned here, where the e5ect of
adaptive (real-valued) mutations on the convergence properties in a GA using 0tness-
proportional selection has been investigated. Only recently Beyer and Deb [16] started
0rst investigations on the (self-) adaptive behavior of real-coded GA populations and
pointed out similarities concerning the convergence order of real-coded GA and ES.
In the early phase of ES, these EA were mainly developed and analyzed by engineers.

A more or less system-theoretic approach aiming at the prediction of the EA’s behavior
as a dynamical system served as the central paradigm. That is, the usual way of thinking
about a theory of EA is considering the EA and the objective function f :Rn �→ R
(function to be optimized, often referred to as 0tness function) in terms of a dynamical
(or evolutionary) system, the “EA system”. The goal of this type of theory is therefore
to model the real EA system and to predict certain aspects of its behavior.
Evolution strategies as a special version of EA operate on a population of � parent

individuals P=(a1; : : : ; a�). In general, each individual am comprises a set of object
parameters y∈Rn (i.e., the search space variables to be optimized), a secondary set
of so-called (endogenous) strategy parameters s, and its 0tness function value f(y):
am =(ym; sm; f(ym)). By producing � o5spring ãl from the parental population P via
recombination and mutation an o5spring population P̃ is formed. After that, truncation
selection (sometimes called “breeding selection”) is applied resulting in a new popu-
lation forming the parent population at time step (or generation) t + 1. Depending on
whether selection takes only P̃ into account or both parent and o5spring population
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(P; P̃), one speaks of comma selection (denoted by (�; �)) and plus selection (de-
noted by (� + �)), respectively. The latter case is an elitist selection scheme because
it conserves the best individual (with respect to its measured 0tness) found so far.
From a formal point of view, the state of the EA at time t is fully determined by

the state of the parent population P(t). If we include all information which inGuences
the future in the strategy parameters, the stochastic process describing the EA is a
memory-less process (or 0rst-order Markov process) whose transition operator will be
called M(t). Let p(t)(P) be the state density at time step t. Then

p(t+1)(P) = M(t) · p(t)(P):

While this equality describes the dynamics of the EA system completely, its useful-
ness is rather limited: the analytical determination of the dynamics is almost always
excluded. Even in the simplest cases, the analytical determination of the Markov kernel
is excluded. Furthermore, the information provided by the p(t)(P) dynamics is rather
di/cult to interpret. Spears [85] reports about similar problems during the analysis of
EAs on discrete search spaces. One way to circumvent these problems is to investigate
in0nite instead of 0nite populations (see [86]). We analyze the original process and
are satis0ed with less universal parameters than the Markov kernel.
Aggregated quantities, especially expected values which can be derived from p(t)(P),

related to the optimization performance are of special interest. When thinking of EA
practice, the user often monitors the dynamics of the 0tness values, e.g., expected
average population 0tness and expected best-so-far 0tness come into mind. From a
theoretical viewpoint also the expected distance R(t) to the optimum state (if there is
a single one) is of interest. It should be the aim of theory to predict these mean-
value dynamics for a given EA system analytically. However, up until now, even
this task can only be accomplished for the simplest EA systems using asymptotic
(n→∞) considerations or by relying on approximations. Later we will report about
such analyses using simple 0tness functions such as the sphere model and the ridge
family.
Before that we investigate some alternatives for characterizing performance aspects

of the EA system bypassing the problems with the EA dynamics:
• global convergence proofs,
• order of convergence,
• local performance measures, and
• global performance measures.
Since EA are randomized algorithms, there is always a certain probability of not reach-
ing the optimum state ŷ or a certain vicinity of the optimum (in continuous search
spaces) within a 0nite number of time steps. Therefore, global convergence statements
concern the in0nite time behavior of the EA. Investigating the convergence of the
0tness values f∈R to the global optimum f̂ :=f(ŷ), one has to show that

Pr(|f(y(t)1;�)− f̂|6�)

converges (with t→∞) to 1 for each positive constant �. Here y(t)1;� represents the
best out of the � parent individuals at time t. The 0rst result of this type, namely
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for the (1+1)-ES with constant Gaussian mutation strength, was sketched by Rechen-
berg [70]; a rigorous proof can be found in Born [19]. This result has been gener-
alized for population-based EA with elitist selection schemes by Eiben et al. [28].
Concerning non-elitist selection schemes, proving or disproving global convergence
depends also on the 0tness function and the mutation (control) rules. For exam-
ple, canonical GA, using non-elitist selection schemes like proportionate or tourna-
ment selection, are not globally convergent. This aspect has been pointed out by De
Jong [21,22] and formalized and generalized by Rudolph [73,74]. Davis and Principe
[20] have considered the convergence of the population density toward a steady-state
density.
Global convergence is often regarded by theoreticians as a minimal prerequisite an

EA should obey in order to qualify as a suitable optimization algorithm. Of course,
global convergence is (trivially) necessary for locating the optimum with probability
one and deriving the expected running time of such algorithms. However, in practice,
EA are very often used for evolving approximate solutions under hard cpu-time re-
strictions, not necessarily the optimal solutions. Therefore, the EA should rather be
regarded as amelioration techniques and not as optimization algorithms. Furthermore,
it is often desirable to evolve rather robust solutions than to locate a singular peak.
All these tasks are not necessarily better served by a globally convergent EA, it might
be the case that just the non-convergent EA versions, e.g. using non-elitist selection
techniques, prove better suited for such purposes.
In order to summarize this discussion, proving global convergence is of certain math-

ematical interest, but it provides a characterization of the EA dynamics much too crude.
For example, it does not answer the question how fast the optimum is approached. In
the theory of (deterministic local) optimization, the concept of convergence order is
used to provide bounds on the dynamics. Rappl [68,69] was the 0rst to introduce this
concept in order to characterize random search methods similar to the (1+1)-ES. One
possibility is to consider the dynamics of the expected 0tness value toward the opti-
mum f̂ (minimization considered here), i.e. E(f(y(t))−f̂). He was able to show under
certain conditions on the 0tness function and a mutation operator with time-constant
mutation density that

E(f(y(t))− f̂) = t−W(1=n):

This implies an exponential running time. Using a constant mutation density throughout
the whole evolution does not yield an e/cient algorithm for the problem class consid-
ered. Therefore, in continuous search spaces the mutation density should be controlled
during evolution. Using sphere-symmetrical mutation densities together with a suitable
step-size control for the length of the mutations Rappl [68] was able to prove linear
convergence for a class of functions with positive de0nite Hessian matrix. Linear con-

vergence in mean is obtained if there exists a q¿1 such that qtE(f(y(t))−f̂)
t→∞−−−→ 0,

thus leading to an exponentially fast approach toward the optimum value f̂. Interest-
ingly, under the conditions made, it can also be shown that there exists a q̃¿q¿1

such that q̃tE(f(y(t))− f̂)
t→∞−−−→ ∞, that is, the dynamics is also bounded from below
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by an exponential function. Therefore,

E(f(y(t))− f̂) = 2−W(t);

where the constants in the W-expression depend on f and n. This result, which basically
holds for convex 0tness level sets (with positive de0nite Hessian), is based on the
assumption that the EA “is able” to control the mutation strength (i.e., the expected step
size) such that the conditions for the proofs are ful0lled. The mutation control part of
the EA is usually not analyzed. The inclusion of the mutation control part in the analysis
appears in all cases investigated until now as a di/cult task. As for the convergence
order analysis the only proof given so far concerns a (1+1)-ES with success dependent
step-size control rule where the step size is increased after a successful mutation by
a factor �1¿1 and decreased by a factor �2 ∈ (0; 1) otherwise. The proof of linear
convergence in Rappl [68] bears witness to that.
Characterizing EA by their convergence order on speci0c objective function classes

may be regarded as a 0rst step toward a quantitative assessment of the EA’s behavior.
If an EA system obeys linear convergence order, then we know that the logarithmic
expected 0tness progress can be bracketed by two linear falling curves of the generation
time t. Since evolutionary optimization is performed very often as an online procedure
applied to a black box, monitoring the logarithmic 0tness dynamics can yield valuable
information about the problem behind the black box. However, as practice shows, linear
convergence order as such does not necessarily say something about the performance
and the computer resources needed in order to reach a certain vicinity of the optimum:
• di5erent EA can have di5erent slopes,
• the computer resources needed for a one-generation time step (basically the number
of f-evaluations) can di5er for di5erent EA,

• the slope itself depends on f and the dimension of the search space, and
• the EA system may not converge to the optimum (e.g., if the 0tness value is disturbed
by noise with constant variance, see below).

For this reason, performance measures are needed which evaluate the EA with respect
to its local performance (i.e., for one time step) and its global performance (i.e., for a
larger number of generations).
Local performance measures (or more generally, progress measures) are expected

values of (aggregated) population states. They are usually de0ned problem-speci0cally
such that they can be used to evaluate the amelioration power of the EA from generation
t to generation t+1 given the population state P(t). The measures in the search space
Rn are called progress rate ’ and those for the 0tness space are called quality gain
XQ. The latter is de0ned as

XQ := E(f(ỹ(t))− f(ỹ(t+1))|P(t));

it measures the expected 0tness gain from one generation to the next. The ỹ-vectors are
aggregated vectors from the parental population such as the vector ỹ= y1;� belonging
to the best 0tness value or the parental population centroid ỹ= 〈y〉.
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The progress rate ’ measures the expected distance change with respect to a prede-
0ned goal Yy, i.e.,

’ := E(‖ỹ(t) − Yy‖ − ‖ỹ(t+1) − Yy‖ |P(t));

where Yy= ŷ (i.e., the optimum state) is usually used.
From the de0nitions it becomes clear that—theoretically—these quantities can be

used to reconstruct the mean value dynamics of the f-values and the residual dis-
tance dynamics, respectively, measuring the approach toward the optimum (provided
that P(t) is known). However, as one might expect, calculating these local progress
quantities is—again—almost always excluded. But, there are some exceptions where
the calculations are tractable by the use of approximations or asymptotic techniques.
We will discuss some results and derivation ideas below.
Global performance measures are designed for evaluating the long-term behavior

of the EA. Here, mainly the aspects of computer resources used are of interest. The
expected running time T needed for reaching the optimum or (in continuous search
spaces) for reaching a certain vicinity of the optimum is considered. Since the 0tness
evaluations are usually that part of the EA which is the most time consuming one,
e/ciency can be measured by counting the number of function evaluations. Of course,
having the evolution dynamics at hand, calculating the e/ciency is trivial (for an
example, see below). However, there are also possibilities to bypass the dynamics.
As already discussed, convergence order results can be helpful for providing rough
estimates on the expected running time. But it should also be stated that knowing the
linear convergence behavior of an EA system does not necessarily imply that the EA
has a guaranteed polynomial time complexity of small order. For such results we have
to take into account the dependence on f and n.
After these general considerations we will discuss the methods for the analysis of ES

using two speci0c examples. First, we give a short review on the main results obtained
from the performance analysis of the (�=�I ; �)-ES on the noisy quadratic sphere. The
index I indicates the type of intermediate multirecombination used in this ES. This
recombination simply calculates the centroid of the parental population (of size �). On
top of that the � o5spring are generated by adding isotropic Gaussian mutation vectors
z∼ �N(0; 1) to the parental centroid. The noisy quadratic sphere is de0ned by

fns(y) := ‖y‖2 + �; with � ∼ N(0; �2
� ):

While for �� =0 optimizing fns is one of the simplest tasks in numerical optimization—
using a gradient strategy, one needs n + 3 function evaluations in order to locate the
optimum exactly (within the numerical accuracy)—noisy 0tness values deteriorate the
performance of most of the deterministic optimization algorithms (for an empirical
study, see [3]). Optimization in noisy environments seems therefore an application
domain where EA might excel.
Local progress measures are especially useful in cases where the local progress can

be used to determine the expected EA system state at t + 1 given the state at t.
When considering only one progress measure, this implies that the EA’s system state
must be describable by only one (aggregated) state quantity which—of course—should
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be related to an observable performance quantity such as the expected 0tness or the
residual distance to the optimum. The sphere model ful0lls this condition perfectly.
The system’s state can be described by the residual distance r of the parental centroid
to the optimum.
Even though the sphere model is highly symmetric and the (�=�I ; �)-ES with isotropic

mutations is considered, the calculation of the progress rate and the quality gain, given
the parental centroid distance r and the mutation strength �, cannot be done analytically.
However, it is possible to derive asymptotically exact expected values for n→∞. The
basic ideas behind the derivation consist of:
• the decomposition of the z mutation vector into a gain part x pointing locally in
optimum direction er (radial component) and a perpendicular part h (transversal
component)

z = −xer + h; with eTr h = 0;

• the introduction of normalized quantities

�∗ := �
n
r
; ’∗ := ’

n
r
; XQ

∗
:= XQ

n
2r2

; and �∗
� := ��

n
2r2

;

• identifying random variates in the expected value expressions such that for n→∞
these quantities become asymptotically normally distributed, e.g., for the quality gain
one obtains

�∗
Q = �∗〈x〉 − �∗2

2n
‖〈h〉‖2;

• and the calculation of expected values (e.g., for �∗
Q) by the technique of noisy or

induced order statistics (see [4,14]).

As a result one obtains

’∗ 
 XQ
∗ 
 �∗2

[
c�=�;�√

�∗2 + �∗2
�

− 1
2�

]
;

where c�=�; � is the expected value of the average of the top � order statistics from the
standardized normal variate, the so-called progress coe/cient. It can be approximated
using the inverse error function

c�=�;� 
 �
�

1√
2�

exp
[
−
(
erf−1

(
1− 2

�
�

))2]
;

where

erf (x) :=
2√
�

∫ x

0
e−t 2 dt

(asymptotically exact for �; �→∞ with �=�∈ (0; 1]). As a 0rst observation we imme-
diately learn from the result on ’∗ that the progress depends on the mutation strength
�∗ and the noise �∗

� . The progress can be even negative indicating (local) divergence



H.-G. Beyer et al. / Theoretical Computer Science 287 (2002) 101–130 113

(keeping � and � as exogenous strategy parameters 0xed). The actual dynamics de-
pends on the dynamics of the mutation strength. We will investigate the dynamical
behavior of the ES later. Here, we will only discuss qualitative convergence aspects.
Non-divergence is ensured as long as ’∗¿0; this leads immediately to the evolution
criterion

�∗2 + �∗2
� 6 4�2c2�=�;�:

This inequality allows a characterization of the evolutionary amelioration process with-
out knowing the actual dynamics.
Consider the special case of vanishing 0tness noise, i.e., �∗

� =0. We obtain from the
evolution criterion �∗62�c�=�; �. What happens under the condition of constant mutation
strength � (i.e., the non-normalized one)? Taking the normalization of �∗ into account
we see that �∗ increases with decreasing r(t) (local convergence). However, �∗ can
only increase up to the point where the evolution criterion is violated, i.e., �∗ =2�c�=�; �
(otherwise ’∗¡0). That is, we have �n=r=2�c�=�; � as equilibrium condition and the
ES does not converge to the optimum. Instead, the evolution stagnates at a speci0c
r-value, the residual localization error R∞

� = const: and �∗
� = 0 ⇒ R¿ R∞ =

�n
2�c�=�;�

:

This shows the necessity of controlling � in comma-strategies in order to approach the
optimum arbitrarily close.
A similar behavior can be observed in the case of constant 0tness noise ��. The

corresponding inequality �∗
� 62�c�=�; � is directly obtained from the evolution criterion

above. Using the normalization equations one gets as 0nal localization error bound

�� = const: and �∗ = 0 ⇒ R2 ¿ R̃
2
∞ =

��n
4�c�=�;�

:

This is an interesting result indicating that an ES system with 0xed � and � evolving
in a 0tness landscape under constant 0tness noise cannot ameliorate with arbitrary
precision—no matter how the mutation strength � is chosen. That is, such a system
cannot be an optimizer in a classical sense. Even though we have considered the
quadratic sphere model here, the e5ect can be observed qualitatively in all EA systems
with 0xed � and � and constant 0tness noise (including GA, see [15]).
When considering the results on ’∗ one notices that progress toward the optimum is

a result of two opposite tendencies: a positive gain part and a negative loss part. The
main e5ect of recombination is due to the reduction of the loss part by a factor of 1=�
compared to the (1; �)-ES. The reason for this loss reduction can be traced back to the
length-reducing e5ect when averaging the uncorrelated h components of the z mutations
by the intermediate recombination. This e5ect has been coined “genetic repair” (for
a detailed explanation see [12]). While the length of the loss part is reduced, the
radial components xm;� of the mutations are only slightly a5ected: due to the e5ect of
(�; �) selection these components are correlated with a tendency pointing into the local
improvement direction. Interpreting these observations, one can state that intermediate
recombination mainly extracts the similarities from the parents.
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Similarity extraction as such does not guarantee a performance increase independent
of the 0tness function and mutation strength control rule used. Furthermore, one has
also to di5erentiate between a performance increase on the generational level and the
e/ciency level. For example, in the case of vanishing 0tness noise �∗

� =0 one obtains
from the result on ’∗ for the maximal progress per generation max�∗ ’∗(�∗)
 �c2�=�; �=2.
As can be proven [14] this theoretically maximal generation progress is asymptotically
equal to � times the maximal progress of the (1+1)-ES, thus, providing a �-fold gen-
erational speed-up. However, when considering the serial running time, this is bought
at the prize of a �-fold number of function evaluations, i.e., the time for completing
a generation is increased by a factor of �. De0ning the e1ciency  as the normalized
progress per 0tness evaluation

 :=
’∗

�
;

one 0nds that the e/ciency (i.e., the serial performance) of the (�=�I ; �)-ES can be
at most that of the (1+1)-ES in the noise-free case. That is, using a (�=�I ; �)-ES
on the sphere model is of no use. However, one can also show [4,5] that things
change positively when considering the noisy case (�∗

� ¿0): For su/ciently large noise
strengths the e/ciency of the (�=�I ; �)-ES exceeds that of the (1+1)-ES. Here we have
found a 0rst situation where a recombining population in Rn really can help.
Due to the spherical symmetry of the model considered, the dynamics of the EA

system can be characterized by the expected value r(t) of the distance of the parental
centroid to the optimum ŷ. From the de0nition of the progress rate and the normal-
ization, one gets r(t) = r(t−1)(1−’∗(�∗(t−1))=n). Since, in general, �∗(t−1) is a random
variate, r(t) itself is still a conditional expected value. Taking the expectation with re-
spect to �∗(t−1) one obtains Xr (t) = Xr (t−1)(1−’∗(�∗(t−1))=n)=:R(t) (using R to symbolize
the unconditioned expected value). Iteration yields formally

R(t) =
t−1∏
g=0

R(0)

(
1− ’∗(�∗(g))

n

)
;

where �∗(g) is the time-discrete dynamics of the normalized mutation strength. Using
the inequality ln(1− x)6− x one can bound the R(t)-dynamics by

R(t) = R(0) exp

[
t−1∑
g=0

ln

(
1− ’∗(�∗(g))

n

)]
6R(0) exp

[
−

t−1∑
g=0

’∗(�∗(g))
n

]
:

As one can see, the R(t)-dynamics is governed by the dynamics of the (normalized)
mutation strength, the calculation of which has been managed up until now only for
the (1; �)-self-adaptive ES [11] and recently [2] for the cumulative step-size adaptation
of Hansen and Ostermeier [41,42]). Without going into detail here, the main results of
these analyzes show that both �-adaptation techniques are able to approach a steady-
state behavior (provided that the respective evolution criteria are not violated) with
positive expected ’∗. Similar observations have been made by simulations using more
complicated 0tness functions and di5erent ES versions (see e.g. [81]).
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In order to proceed with the discussion, we now assume that there is a steady-state
X’∗ such that 0¡ X’∗ =const:¡∞. Taking the logarithm in the equality for R(t) we 0nd

ln(R(t)) = ln(R(0))− t ln
(

1
1− X’∗=n

)
:

One observes linear convergence in the logarithmic picture, i.e., the ES exhibits linear
convergence order. Considering the asymptotic limit n→∞ one 0nds the dynamics

R(t) 
 R(0) exp
(
− X’∗

n
t
)
;

showing that the residual distance to the optimum reduces exponentially fast.
The inequality on the R(t)-dynamics can also be used for estimating the number of

generations needed in order to reach a certain vicinity of the optimum. To this end,
we assume that the �-adaptation technique is able to ensure X’∗¿ Y’∗¿0 after a certain
time period t0. Using this Y’∗, we obtain

R(T+t0)6 R(t0) exp

[
−

t0+T−1∑
g=t0

’∗(�∗(g))
n

]

6 R(t0) exp

[
−

t0+T−1∑
g=t0

Y’∗

n

]
= R(t0) exp

[
− Y’∗

n
T
]
:

Resolving for T , one 0nds

T (n)6
n
Y’∗ ln

(
R(t0)

R(t0+T )

)

and the number " of function evaluations can be bounded by

"(n)6
n
Y 
ln
(

R(t0)

R(t0+T )

)
;

where Y = Y’∗=�. Obviously, the ES exhibits linear time complexity on the noisy sphere
model, provided that the inequality in the evolution criterion is ful0lled.
Even though the performance analysis of the ES on the sphere yields valuable insight

into the dynamical behavior of such strategies, there is still a need for investigations on
more complex test functions. Especially, when the adaptation of the mutation operators
is considered, the sphere model does not cover all essential aspects of the local evolu-
tion process. There is another class of simple 0tness models that has been investigated
empirically by Herdy [44]: the “ridge functions” with the special cases parabolic and
sharp ridge (see also [71]). The general ridge function is de0ned by

fgr(x) := vTx− d[
√

[(vTx)v − x]2]# with vTv = 1; #¿1;
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where #=1 represents the sharp ridge and #=2 the parabolic ridge. The general ridge
can be turned into its normal form by an orthogonal transformation rotating v, the so-
called ridge direction, into a coordinate direction, say y1. Thus, one obtains the normal
form

fr(y) := y1 − dr# with r =

√
n∑

i=2
y2
i :

Now it becomes clear that y1 measures the projection of x on the ridge axis and r
is the distance of x from the ridge axis. W.l.o.g. we assume a maximizing ES. Since
r can only be reduced to zero but y1 can grow in0nitely, it is the general goal to
evolve the population as fast as possible in (positive) y1-direction. Starting from an
arbitrary point in the Rn, the amelioration process can be thought to be divided into
two subgoals [61] minimizing r and enlarging y1. In ES with isotropic mutations both
subgoals are somewhat conGicting. As a result the analysis reveals a performance limit
for #¿2, although the success domain is an unbounded subset of Rn.
Unlike the sphere model, where only one state variable was needed for describing

the state of the (�=�I ; �)-ES in the Rn search space, we now have to consider two state
variables. As suggested by the normal form, y1 and r are the appropriate variables to
describe the evolution in Rn. Therefore, the progress from one generation to the next
must be evaluated by the two corresponding progress measures ’y and ’r , de0ned by

’y := E(y(t+1)
1 − y(t)

1 |y(t)
1 ; r(t); �(t))

and

’r := E(r(t) − r(t+1) |y(t)
1 ; r(t); �(t))

assuming isotropic (Gaussian) mutations with strength �.
Deriving asymptotically exact progress rate expressions (n→∞) follows basically

the ideas outlined for the sphere model. Since these formula are rather lengthy we do
not want to rewrite them here [13,62]. Instead, only the steady-state behavior will be
discussed assuming an ES running with a 0xed mutation strength �. (Including the
�-adaptation in the analysis remains still to be done.)
As has already been mentioned, the amelioration process has to serve two conGicting

subgoals. Depending on d, the amelioration of one of the subgoals can be emphasized.
For example, when d is very large, one has basically an (n − 1)-dimensional sphere
model. The r-evolution is therefore governed by the sphere yielding a steady-state rss
of r where

rss ¿
(n− 1)�
2�c�=�;�

;

note, the actually observed rss depends also on d and #.
For the steady-state progress rate in y1-direction one 0nds

’yss 

�c�=�;�√

1 + (d#r#−1
ss )2

:
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As one can see, for �=const:¿0; ’yss cannot be negative, there is always a certain
progress in y1-direction. The sharp ridge case (#=1) yields a constant progress rate
independent of rss. That is, increasing � yields a linear increase in ’yss . Recombination
does not help in this case (c�=�; �6c1; �).
Things become more complicated when considering cases where #¿1. The case

#=2 is discussed by Oyman and Beyer [62]: one 0nds a steady-state ’y that increases
monotonously with � approaching a performance maximum of �c2�=�; �=((n − 1)d) for
�→∞. Obviously, recombination increases the (generational) progress rate.

For the cases where #∈ (0; 1); ’yss exhibits an unbounded increase with increasing
�, whereas, for #¿2, ’yss runs through a maximum.
Since the r-dynamics reaches rss as steady-state value, the y1-dynamics is mainly of

interest here. Writing Y (t) for the expected value of y(t)
1 one obtains Y (t+1) =Y (t) +

’yss (�). Assuming constant �, ’yss (�) is constant, too. Provided that the ES has reached
the steady-state regime after an initial time t0, one gets

Y (t) = Y (t0) + (t − t0)’yss (�):

That is, the ES travels linearly with the generation time along the ridge axis.
Calculating an estimate for the generations needed to travel a certain distance along

the ridge axis is a trivial task. However, 0nding the n-dependency for #¿1 needs
further considerations. To this end, the normalizations

’? := d1=(#−1)(n− 1)’yss (�) and �? := d1=(#−1)(n− 1)�

are introduced. Using these normalizations and writing T = t−t0, the di5erence equation
for Y (t) can be solved for T :

T (n) = (n− 1)d1=(#−1) Y
(T+t0) − Y (t0)

’?(�?)
:

For the (1; �)-ES it has been shown asymptotically [13] that ’?(�?) does not depend
on n and d. Therefore, one obtains a linear-time complexity. A similar behavior is ex-
pected for the general (�=�I ; �)-ES, however, only the case #=2 has been investigated
up to now.

3. New methods for discrete search spaces

In this section, we consider the optimization of (0tness) functions f : S→R where
the search spaces are 0nite. This is the domain of combinatorial optimization. In his-
tory, evolution strategies have been designed to work on in0nite search spaces while
genetic algorithms were designed for the optimization of pseudo-boolean functions
f : {0; 1}n →R. Today, all variants of evolutionary algorithms are also applied for the
optimization on discrete search spaces.
Since the very beginning researchers have contributed to a theory of evolutionary

algorithms, although a great majority of all papers on evolutionary algorithms describes
experimental results and develops rules of thumb. This experimental knowledge is
immense and has a great inGuence on the actual application of evolutionary algorithms.
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However, the people working in theoretical computer science on e/cient algorithms
have (at least until recently) not worked on evolutionary algorithms and they have
not accepted the theoretical results on evolutionary algorithms as “theory”. Hence, in
theoretical computer science evolutionary algorithms have been considered as the black
sheep in the family of algorithms. One knows that they exist and that they are applied
(more or less successfully), but one has ignored them while developing a theory of
e/cient algorithms.
We try to explain the reasons for this situation. The scope of theoretical analysis

of algorithms was for some time almost limited to deterministic algorithms, but since
a long time randomized algorithms play a major rule (see, e.g., [58]). Also the aim
of exact optimization has been supplemented by the aim of approximate optimization.
Finally, theoretical computer science was focussed for a long time on the asymptotic
behavior. Several asymptotically very good algorithms have never been implemented,
since they are too di/cult to implement or since it was clear that they behave badly
on instances of realistic size. Nowadays, theory contributes to the area of algorithm
engineering, i.e., to the design of algorithms which are easy to implement, e/cient
for instances of reasonable size, and asymptotically e/cient. However, theory still
insists on the analysis of algorithms. Algorithms should have a stamp of quality, i.e.,
the expected time to obtain a solution of a prescribed quality should be estimated as
accurate as possible. Since it is most often impossible to obtain such results for each
single instance of a problem, one considers the worst-case time with respect to classes
of inputs which share some properties like the input length.
The classical contributions to a theory of evolutionary algorithms do not allow results

of this type. There are many very precise results about what happens within one time
period (generation) of an evolutionary algorithm. Performance measures like progress
rate or quality gain are of this kind. Also the famous schema theorem is a statement
about the one-step behavior. Moreover, there are many convergence results describing
what happens as time goes to in0nity. Some other results are obtained under unreal-
istic assumptions like the model of evolutionary algorithms working with populations
of in0nite size. Only Rabani et al. [67] estimate the e5ect of such an assumption rig-
orously. However, their paper investigates a stochastic process without 0tness-based
selection. Finally, many attempts have been made to explain the working principle of
GA as a building-block assembling strategy [38]: The 0nal solution is obtained by
successively putting together partial solutions through the application of the crossover
operators. Given this picture, one can ask for bounds on the population size � in order
to guarantee for a correct assembly of the partial solutions (building blocks, assumed
to be already existing in the initial population) with a certain error probability. This
approach has been proposed by Goldberg et al. [39]. A population sizing theory based
on a more re0ned model can be found in Harik et al. [43].
Modeling binary GA as a dynamical system on a macroscopic level, i.e. by expected

value dynamics (similar to the approach used in real-valued ES theory), has been
proposed by Pr[ugel-Bennett and Shapiro [65], Shapiro et al. [84]. One of the basic
ideas is to describe the population’s 0tness distribution by expansions of a Gaussian
(also used in ES theory, see [9,10]). The peculiarity of this approach is, however,
that the underlying microscopic description level is bypassed using inference methods
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gleaned from statistical mechanics, especially the maximum entropy principle [52]. For
an introduction into this interesting method as well as further references, the reader is
referred to Pr[ugel-Bennett and Rogers [64] and Shapiro [83].

Reviewing the history one may conclude that the theory on evolutionary algorithms
has tried to obtain too general statements or too precise statements such that the results
are limited to short periods of time or to the limit behavior. In particular, there were
almost no results before the mid-nineties of the last century estimating the worst-case
expected optimization time of an evolutionary algorithm working on some “problem”
or estimating the probability of obtaining within t(n) steps, t(n) some polynomial, a
solution ful0lling a minimum demand of quality.
During the last years attempts have been made to obtain such results also for evolu-

tionary algorithms and to turn the theory on evolutionary algorithms into a legal part of
the theory of e/cient algorithms. This theory is still in its infancy. Here we describe
only methods and results of this new approach. One has to admit that the analysis of
evolutionary algorithms is somehow more di/cult than the analysis of problem-speci0c
algorithms. One reason is that many problem-speci0c algorithms have been designed
not only to be e/cient but also to allow a proof that they are e/cient. Evolutionary
algorithms have been designed to be successful in many situations and we have to
analyze these fundamental variants of evolutionary algorithms.
Discrete optimization problems P consist of (typically in0nitely many) “instances” or

functions, each de0ned on a 0nite search space. The set of instances of the problem is
partitioned into subclasses Pn which share the search space Sn. This includes all the fa-
mous combinatorial optimization problems. In this paper, we investigate pseudo-boolean
functions where Sn = {0; 1}n. Our focus is not on classical combinatorial optimization
problems like maximum matchings, maximum Gow, shortest paths, or one of the many
NP-equivalent problems. Instead of this we investigate classes of functions sharing
some structural properties. This is motivated by the claim that evolutionary algorithms
work e/ciently on many types of problems as long as the resulting 0tness functions
have some “nice structure”. In the future, one should also try to obtain results for
classical optimization problems. Even for NP-equivalent optimization problems such
an analysis is interesting, since one may consider simpler subproblems restricting the
set of instances or restricting the demanded quality of the solution.
The rest of this section is organized as follows. First, we introduce the very simple

(1+1)-EA which is a mutation-based hill-climber working with population size 1 (this
algorithm is also denoted as (1+1)-ES). This algorithm is for many problems as
e/cient as all other mutation-based evolutionary algorithms and for its analysis we have
to present many methods only used recently for the analysis of evolutionary algorithms.
Then we analyze the (1+1)-EA on the class of linear functions, on the class of

monotone pseudo-boolean functions of bounded degree, and on the class of unimodal
functions. Then it is discussed what can be gained by more sophisticated variants of
evolutionary algorithms which allow varying mutation probabilities, the use of multi-
starts, or larger populations. Afterwards, we include the crossover operator and discuss
problems to analyze evolutionary algorithms with crossover. We also describe how the
35 years old conjecture that crossover can decrease the expected optimization time from
exponential to polynomial has been proved. For many of the considered problems it is
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obvious that problem-speci0c algorithms outperform evolutionary algorithms. However,
the comparison of problem-speci0c algorithms and “general” evolutionary algorithms
is unfair. The scenario of black-box optimization is described and it is argued that
lower bounds on the black-box complexity of problems are lower bounds for “general”
randomized search heuristics.

The (1+1)-EA with mutation probability 1=n for the maximization of functions
f : {0; 1}n →R.

1. Choose x∈{0; 1}n randomly with respect to the uniform distribution.
2. Repeat until a stopping criterion is ful0lled:

(a) Construct the mutant x′ from x where the bits x′1; : : : ; x
′
n are created indepen-

dently and Prob(x′i = xi)= 1− 1=n.
(b) Replace x by x′ i5 f(x′)¿f(x).

This algorithm is a randomized hill-climber, since x never is replaced by some x′ with
a worse 0tness. Nevertheless, it cannot get stuck forever in a local optimum, since each
b∈{0; 1}n has a positive probability of at least n−n to be the mutant of a∈{0; 1}n.
This implies an upper bound of nn for the expected optimization time of the (1+1)-
EA on any f : {0; 1}n →R. The (1+1)-EA considered as an evolutionary algorithm is
based on mutation and selection only.
We do not 0x a stopping criterion, since we investigate the (1+1)-EA without stop-

ping criterion. For each f the random variable Xf describes the 0rst point of time
where some good event happens. In this paper the good event is the event that the
current search point x is f-optimal. We are interested in the expected optimization
time E(Xf) and the success probability Prob(Xf6t). (This is another type of success
probability as described in the Introduction.) For a problem P whose instances are
described by the union of some Fn ⊆{f : {0; 1}n →R}, the worst-case expected opti-
mization time equals tP(n) :=max{E(Xf) |f∈Fn} and the worst-case success proba-
bility equals sP; n(t) :=min{Prob(Xf6t) |f∈Fn}.
Each pseudo-boolean function f : {0; 1}n →R can be uniquely described as a poly-

nomial

f(x) =
∑

A⊆{1;:::;n}
wA ·

∏
i∈A

xi:

Hence, we obtain the class P(n; d; N ) of all polynomials on n variables whose degree
(the largest |A| where wA �=0) is bounded by d and where at most N terms have
a non-zero weight (d and N may depend on n). A polynomial is called monotone
increasing if no weight is negative. This description is not symmetric with respect to
0 or 1. We may describe f also with respect to z=(z1; : : : ; zn) where zi = xi for some
i and zi =1− xi for all other i. This new description of f has the same degree, but in
general a di5erent number of non-vanishing terms. A polynomial is called monotone
if it is monotone increasing with respect to some x→ z-transformation.
Linear (or degree-1) polynomials can be maximized easily. The (1+1)-EA does

not explore the structure of the instance and depends on the instance f only via the
f-values of all sample points x and x′. A good algorithm should be e/cient on linear
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functions even if it does not “know” that the function is linear. Indeed, the linear
function ONEMAX de0ned by x1 + · · · + xn was one of the 0rst functions where the
behavior of evolutionary algorithms has been analyzed. M[uhlenbein [59] has proved
that the expected optimization time is O(n log n). This analysis is based on a simple
Markov chain approach. Droste et al. [23] have completed the analysis by a matching
lower bound which is based on the coupon collector’s theorem.
It is already rather complicated to analyze the (1+1)-EA on all linear functions.

Droste et al. [24] have proved the following result.
The expected optimization time of the (1+1)-EA on a linear function is bounded

above by O(n log n) and, if all weights are non-zero, bounded below by Q(n log n).
The lower bound follows easily from the coupon collector’s theorem. For the upper

bound it is also easy to see that it is su/cient to consider monotone increasing linear
functions. It is illustrative to discuss 0rst the proof idea for the function binary value
de0ned by

BV (x) = x1 · 2n−1 + x2 · 2n−2 + · · ·+ xn · 20:

The leftmost Gipping bit decides whether the mutant is better than its parent. The
Hamming distance to the optimum 1n can be increased, the mutant 10n−1 of 01n−1 is
accepted. However, the number of Gipping bits has an average number of 1 and we
expect that successful steps (x′ replaces x) tend to increase the number of ones. We
partition the run of the (1+1)-EA into phases where the ith phase starts with the 0rst
search point with at least i ones. In a successful step, the leftmost Gipping bit is a 0-bit.
We assume pessimistically that all bits to the right of the leftmost Gipping bit are ones.
If these are d bits, we may increase the number of ones at most by 1, but may decrease
it signi0cantly. Again pessimistically we assume that d takes its largest possible value
n − 1. Then we investigate a homogeneous random walk on a line starting at i. We
are interested in the 0rst point of time where we reach i+1 (by our assumption steps
to the right are steps of length 1 and we cannot jump over i + 1). If the expected
step length is bounded below by a positive constant c, we obtain by Wald’s identity
the result that the expected waiting time is bounded above by 1=c, also a constant.
However, in our situation the expected step length of the random walk equals 1=n.
For the special case of the function BV we can ignore at 0rst the right half of the
string, since these bits do not inGuence the (1+1)-EA on the left half of the string.
Then the number of bits Gipping from 1 to 0 in a successful step is bounded above
by n=2− 1 leading to an expected step length of at least 1=2 and an expected number
of at most two successful steps within one phase. The probability of a successful step
in the ith phase is at least (n=2− i)=(en), since there are at least n=2− i zeros in the
left half and n=2 − i 1-bit mutations lead to successful steps. The probability of each
speci0c 1-bit mutation in the left half equals (1=n) (1− (1=n))n=2−1¿1=(en). This leads
to a bound of O(n log n) until the left half consists of ones only. A similar analysis
works for the right half where only steps without Gipping bit in the left half are
successful.
This description of the proof idea shows that we have to be satis0ed with an

O-bound, since only pessimistic assumptions lead to a Markov chain which can be



122 H.-G. Beyer et al. / Theoretical Computer Science 287 (2002) 101–130

analyzed. However, the resulting constant factor is still not much larger than the con-
stant factor in the corresponding lower bound.
We have described the proof for the speci0c example BV as an illustrative example.

A general linear function may have some weights which are almost equal (as ONE-
MAX) but also extremely di5erent weights (as BV). For the analysis we can assume
that w1¿ · · ·¿wn. However, it is not possible to ignore the right half of the bits in
the 0rst phase. Droste et al. [24] have used the idea to measure the progress of the
optimization procedure by a potential function which in this case itself is linear namely
g(x) := 2(x1 + · · · + xn=2) + (xn=2+1 + · · · + xn). The (1+1)-EA works on an arbitrary
linear function f but the progress is measured with respect to the potential function
g. This implies that the g-value can decrease during the optimization process. Again
the idea is to prove a bound of O(1) on the expected number of steps until from
the g-value of i a g-value of at least i + 1 is reached. It is then easy to 0nish the
proof by an investigation of the expected number of unsuccessful steps. Here it is
already technically involved to de0ne a Markov chain which provably is slower than
the (1+1)-EA with respect to the potential function and which nevertheless allows the
proof that the expected gain of the g-value is bounded below by a positive constant.
The discussion shows that even the asymptotically exact analysis of evolutionary

algorithms on simple classes like the class of linear functions is technically involved.
Similarly to the analysis of many problem-speci0c algorithms one has to obtain an
intuition how the optimization works and then apply the tool-box for the analysis of
algorithms. Already the analysis of the (1+1)-EA on linear functions is quite dif-
ferent from the typical papers on the theory of evolutionary algorithms and it ap-
plies ideas quite similar to those used in the analysis of problem-speci0c randomized
algorithms.
The next step is to investigate polynomials of higher degree. However, it is well

known that the maximization of pseudo-boolean polynomials of degree 2 is NP-hard.
Hence, we do not expect that any randomized search heuristic has a polynomially
bounded expected optimization time. Whenever an algorithm for a problem has an
exponential worst-case behavior, one is interested in particular instances where this
algorithm fails. Droste et al. [26] have de0ned a family of degree-3 polynomials based
on instances for MAX-3-SAT where the (1+1)-EA and all generic variants of evo-
lutionary algorithms need exponential time on the average. They even have proved
that the success probability of each mutation-based evolutionary algorithm producing
exp(o(n1=2)) strings is bounded by exp(−Q(n1=2)). This instance (see also [63]) con-
sists of the clauses xi; 16i6n, and xi + Xxj + Xxk ; 16i; j; k6n; i �= j �= k �= i. The string
1n is the only one to ful0l all clauses, but as long as the number of 1-bits is larger
than 1 and less than (2=3)n one increases the number of satis0ed clauses by Gipping
a 1-bit and not by Gipping a 0-bit.
Wegener and Witt [88] have de0ned a degree-2 polynomial where the (1+1)-EA

has the following behavior:
• for each ”¿0, the success probability within c(”)n log n steps, c(”) a constant, is at
least 1=2− ”,

• for each ”¿0, the success probability within 2o(n log n) steps is bounded above by
1=2 + ”.
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Hence, the expected optimization time is exponential. The function is de0ned by

f(x1; : : : ; xn; y) := y · 2 · (x1 + · · ·+ xn) + (1− y) · ((3n=2)− x1 − · · · − xn):

The value of y decides whether we like to maximize the number of 0-bits or the
number of 1-bits of x. The 0rst value of y is random and it is quite likely that it
changes only after several steps. Then the x-string has with large probability many
more ones then zeros (if y=1) or vice versa (if y=0). Then many x-bits have to Gip
in one step to accept a change of y. Hence, starting with y=1 it is likely to reach the
optimal string 1n quickly, but starting with y=0; it is likely to reach the sub-optimal
string 0n and then we have to wait for a long time until we leave this local optimum.
It is obvious that in such a situation a multi-start variant of the (1+1)-EA works
e/ciently even in the expected case. Using p(n)=!(n log n) independent runs of the
(1+1)-EA, the expected optimization time is bounded by O(p(n) ·n · log n). Here we
assume that during one phase each run of the (1+1)-EA performs one step and that
the cost of a phase is p(n). One may expect that also evolutionary algorithms with a
larger population size than 1 work e/ciently. This is still open, since in that situation
the strings of the current population do not act independently. The probability that
selection pressure forces all strings to the neighborhood of 0n can be not negligible.

These examples reveal certain di/culties of evolutionary algorithms when optimizing
low-degree polynomials with a simple description. This makes it interesting to consider
classes of polynomials where evolutionary algorithms are e/cient.
A simple case is the optimization of positive monomials w ·zi(1)zi(2) : : : zi(d) where

w¿0; 16i(1)¡ · · ·¡i(d)6n and zi ∈{xi; 1 − xi}. The expected optimization time of
the (1+1)-EA on such monomials is W(2dn=d). This can be proved by a direct Markov
chain approach, since the (1+1)-EA accepts each string until it 0nds an optimal string.
Garnier et al. [37] have performed the analysis for d= n; but their results can be gen-
eralized easily. The result is not surprising. W.l.o.g. we discuss the case of x1x2 · · · xd.
There are 2d assignments to (x1; : : : ; xd); 2d − 1 of them cannot be distinguished by
the value of the monomial and the last one is optimal. We cannot expect to 0nd the
optimal assignment (without knowing the monomial) in o(2d) steps. The additional
factor describes the average number of steps until the (1+1)-EA Gips one of the d
essential bits.
Now we investigate monotone polynomials which are sums of positive monomials

where zi = xi in all monomials or zi =1 − xi in all monomials. The following result
can be proved.
The expected optimization time of the (1+1)-EA on monotone polynomials with N

non-vanishing terms and degree d6 log n is bounded by O(Nn2d=d).
The special case of d=2 has been considered by Wegener and Witt [88] and the

more general case by Wegener [87]. We describe some ideas of the proof. We assume
that the terms are numbered in such a way that w1¿ · · ·¿wN¿0 for the weight wi

of term ti. Moreover, we assume that the terms contain only positive variables xj. The
evolutionary algorithm has to activate all terms. An assignment a activates a term t
i5 t(a)¿0. On one hand it is useful to have many activated terms, on the other hand
it is useful that the important terms (with large weight) are activated. It may happen
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that the number of activated terms decreases and it also may happen that the most
important term is deactivated.
In order to cope with these problems we partition {0; 1}n into N + 1 0tness layers

L0; : : : ; LN where

Li := {a|w1 + · · ·+ wi 6 f(a) ¡ w1 + · · ·+ wi+1}
and LN := {a|f(a)=w1 + · · ·+wN} contains all optimal strings. In order to prove the
proposed bound it is su/cient to prove that the expected time to leave Li is bounded
by O(n2d=d) which is the time bound to activate a single monomial. Indeed, for a∈Li
there exists a passive term whose activation would imply that we leave Li. Therefore,
we consider the period of time until this special term is activated.
We have to cope with the inGuence of the other terms:

• There are steps which are not accepted by the (1+1)-EA, since the total 0tness
decreases.

• The step activating the special term may be not accepted, since other terms are
deactivated.

It is straightforward to show that the last event happens with a probability bounded
by a constant less than 1. If this happens, we start another trial (with perhaps another
special term). However, we need only an expected number of O(1) trials. The 0rst
event can happen in many steps. Intuitively, we believe that monotonicity is essential
in this situation. The 0tness decreases only if a term is deactivated. This implies that a
1-bit Gips and this is a bad event for the optimization of the polynomial. In particular,
if a 1-bit Gips which is contained in our special term, we are happy if such a step is
not accepted. These arguments may sound convincing, but they are far from a proof.
The proof is done by comparing the activation of the special term with the (1+1)-

EA working on the given polynomial with the activation of the special term with the
(1+1)-EA working on this term only. The idea is to prove a lower bound of some
positive constant on the probability that the term is activated within c ·2d ·n=d steps
(c some appropriate constant). Then the expected number of these phases is O(1). It
is rather unlikely that three bits of the term Gip simultaneously within one phase and
we ignore phases with such steps. Then we are in the situation of quite local changes
which can be handled by a tedious analysis.
This analysis is based on super-pessimistic assumptions. We wait for a special term

to be activated in order to leave a 0tness layer. We leave this layer also if other terms
or small groups of terms are activated. Moreover, monotonicity leads to a positive
correlation for the activation of terms which share variables. Hence, we conjecture that
among the monotone polynomials those with disjoint terms are the most di/cult ones.
Let n=dk. Then

x1x2 : : : xd + xd+1xd+2 : : : x2d + · · ·+ xn−d+1xn−d+2 : : : xn

has been called royal road function by Mitchell et al. [56]. They have assumed, based
on the building-block hypothesis, that crossover is essential for the optimization of
this function. However, they have proved later [57] that the (1+1)-EA is very e/-
cient on this function. Its expected optimization time equals W(2d ·(n=d) log(n=d)). We
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conjecture that the bound O(2d ·n · log n) holds for all monotone polynomials of degree
d. It is a challenge to prove this bound.
Royal road functions are one example where even the intuition of those who have

invented genetic algorithms failed. Only the analysis of the expected optimization time
can decide which algorithm is the better one in a given situation.
A pseudo-boolean function is called unimodal if the global optimum is unique and

all other points of the search space have a better Hamming neighbor. The discussion
whether unimodal functions can be optimized e/ciently by evolutionary algorithms
has a long history. Horn et al. [47] have introduced unimodal long path functions with
the following properties. It is easy to 0nd the starting point of a path p0; p1; : : : ; pl

where H (pi; pi+1)= 1 (the Hamming distance), f(pi+1)¿f(pi), and for all points x
outside the path f(x)¡f(p0). They also presented examples where experiments led
to the conjecture that the expected optimization time is exponential. Also numerical
investigations by H[ohn and Reeves [45] could not solve the problem. Finally, Rudolph
[75] proved that the (1+1)-EA typically does not follow the path and uses shortcuts
which leads to an expected optimization time of O(n3). He also designed another long
path function where shortcuts seem to be unlikely. Droste et al. [25] have proved
this conjecture by proving that all mutation-based evolutionary algorithms need on
the average exponential time on this problem. Some experiments show that crossover
may be helpful for some long path problems. Others may add more and more search
operators and the discussion can be stopped only by proving that no randomized search
heuristic is e/cient on all unimodal functions.
For such a purpose, we have to consider a class of algorithms including all general

randomized search heuristics. This is the black-box scenario. A general heuristic does
not work with the parameters of the function which are assumed to be unknown. It can
obtain information about f only via sampling. In the tth step the algorithm knows the
0rst t−1 sample points a1; : : : ; at−1 ∈{0; 1}n and their 0tness values f(a1); : : : ; f(at−1)
and it may decide about a probability distribution to choose at ∈{0; 1}n.
A black-box algorithm is very powerful, since all calculations are free, only sampling

is charged. However, it is limited, since the parameters of the instance are not known. In
order to prove lower bounds for randomized algorithms, one can apply Yao’s minimax
principle [89]. If the number of instances is 0nite, a lower bound for the average-
case optimization time of deterministic algorithms with respect to a given probability
distribution on the inputs is a lower bound for the worst-case expected optimization time
for all randomized algorithms. Droste et al. [23] have de0ned a probability distribution
on a 0nite subset of all unimodal functions on {0; 1}n such that the average-case
optimization time of deterministic algorithms is exponential. Since general evolutionary
algorithms and all other general randomized search heuristics are black-box algorithms,
we know that none of them is e/cient on all unimodal functions. This claim holds
independently from complexity-theoretical assumptions like NP �=RP.
The (1+1)-EA is a very simple evolutionary algorithm. We have already seen

that multi-start variants can outperform the (1+1)-EA signi0cantly. Jansen and We-
gener [51] have also proved that one may need not too small populations in order
to obtain good expected optimization times—even in the absence of the crossover
operator.
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The (1+1)-EA has been described with a mutation probability of 1=n, but some
lower bounds were stated for all mutation-based evolutionary algorithms. This allows
mutation probabilities di5erent from 1=n and even varying over time as long as in each
mutation step each bit is Gipped with the same probability. Sometimes it has been
conjectured that no mutation probability is signi0cantly better than 1=n. This has been
proved for certain functions [6,59]. In applications, several heuristics to choose good
mutation probabilities adaptively have been suggested.
Our analytical tools can clarify these questions [27,49,52]. There are functions where

only mutation probabilities of the unusual size W((log n)=n) lead to a polynomial ex-
pected optimization time. In other situations each 0xed mutation probability leads to
an exponential optimization time while a simple dynamic schedule guarantees a poly-
nomial expected optimization time. This schedule starts with a mutation probability
of 1=n, doubles it after each step until a value of at least 1=2 is reached. Then the
parameter is reset to 1=n and a new phase starts. Although steps with a large muta-
tion probability may cause a disaster, this dynamic variant is quite robust, for many
functions the expected optimization time does not increase signi0cantly.
Population size 1 with or without the multi-start option simpli0es the analysis. Pop-

ulations lead to individuals depending on each other. The so-called hitchhiking e5ect
is based on the observation that often the individuals of a population share many bits.
Then it is wasteful to work with a population instead of a single individual. Crossover
has only a chance to contribute essentially to the search if it is applied to quite dif-
ferent strings. Very early attempts to consider the e5ect of crossover empirically are
described by Rechenberg [70].
Jansen and Wegener [48] have investigated a population on the kth level of {0; 1}n,

i.e., only strings with exactly k ones are accepted. Mutation has the e5ect to create
new strings. However, the mutants do not di5er much from their parents. Crossover of
x and y creates a string z “between x and y”. If k is far away from 0 and n, the level
is much larger than polynomial and one may hope that crossover and mutation create
a population with quite di5erent strings. Such a result has been proved in Jansen and
Wegener [48] for quite small crossover probabilities. This paper reveals the problems of
such an analysis. The results have been obtained under the very pessimistic assumption
that crossover always has the worst possible result.
The aim of Jansen and Wegener [48] was not a general analysis of the crossover

operator. The aim was much more pragmatic. Crossover has been used since the sixties
of the last century and its usefulness has been discussed in numerous papers. Despite
these investigations no function was known where crossover reduces the expected opti-
mization time from non-polynomial to polynomial. The analysis of Jansen and Wegener
[48] leads to the 0rst result of this type. However, the expected optimization time is
reduced only from superpolynomial to polynomial and this can be proved only for
crossover probabilities of size o(1=n). The results have been improved in Jansen and
Wegener [50] for other arti0cial functions. These are functions called real royal road
functions (di5erent functions depending on the crossover type where the most popular
types namely one-point crossover and uniform crossover are considered) such that all
mutation-based evolutionary algorithms have an exponential expected optimization time
while a genetic algorithm only needs polynomial time on the average. The results hold
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for all crossover probabilities not too close to 0 and 1 (at least 1=p(n) and at most
1 − 1=p(n) for some polynomial p), for all reasonable selection procedures to select
parents (the probability of choosing x as parent is at least as large as the corresponding
probability for y if f(x)¿f(y)) and a reasonable procedure to select the next genera-
tion (choose the string with the smallest 0tness and, if there are many strings with the
same 0tness, avoid duplicates as much as possible). These results are not very di/cult
to prove after one has chosen the appropriate functions and has the tool-box described
in this section.
We conclude that (at least for discrete search spaces) one can apply for the analysis

of evolutionary algorithms methods developed for the analysis of problem-speci0c ran-
domized algorithms. This leads to upper and lower bounds on the expected optimization
time and the success probability of evolutionary algorithms. Such results are necessary
to compare evolutionary algorithms with their competitors. The results should not hide
the fact that the analysis of the expected optimization time of evolutionary algorithms
is still in its infancy. Many more problems are open than solved. It is our hope that the
approach described in this section motivates more researchers to work in this direction.
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