# 6. Cosntruction of AVD

Finite Part of AVD

- Let  $\Gamma$  be a simple closed curve such that all intersections between bisectring curve lie inside the inner domain of  $\Gamma$
- Consider a site  $\infty$ , define  $J(p, \infty) = J(\infty, p)$  to be  $\Gamma$  for all sites  $p \in S$ , and  $D(\infty, p)$  to be the outer domain of  $\Gamma$  for all sites  $p \in S$ .

Incremental Construction

- Let  $s_1, s_2, \ldots, s_n$  be a random squence of S
- Let  $R_i$  be  $\{\infty, s_1, s_2, \ldots, s_i\}$
- Iteratively construct  $V(R_2), V(R_3), \ldots, V(R_n)$



General Position Assumption

• No  $J(p,q),\;J(p,r)$  and J(p,t) intersect the same point for any four distinct sites,  $p,q,r,t\in S$ 

 $\rightarrow$  Degree of a Voronoi vertex is 3

Remark

- For  $1 \le i \le n$  and for all sites  $p \in R_i$ ,  $VR(p, R_i)$  is simply connected, i.e., path connected and no hole
- If J(p,q) and J(p,r) intersect at a point x, J(q,r) must pass through x

**Basic** Operations

- $\bullet$  Given J(p,q) and a point v, determine  $v \in D(p,q), \ v \in J(p,q),$  or  $v \in D(q,p)$
- $\bullet$  Given a point v in common to three bisecting curves, determine the clockwise order of the curves around v
- Given points  $u \in J(p,q)$  and  $w \in J(p,r)$  and orientation of these curves , determine the first point of  $J(p,r) \mid_{(w,\infty]}$  crossed by  $J(p,q) \mid_{(v,\infty]}$
- Given J(p,q) with an orientation and points v, w, x on J(p,q), determine if v come before w on  $J(p,q) \mid_{(x,\infty]}$

Notation: Give a connected subset A of  $R^2$ , intA, bdA, and clA mean the interior, the boundary, and the closure of A, respectively.

Conflict Graph G(R), where R is  $R_i$  for  $2 \le i \le n$ 

- bipartitle graph (U, V, E)
- U: Voronoi edges of V(R)
- V: Sites in  $S \setminus R$
- $\bullet \ E: \{(e,s) \mid e \in V(R), s \in S \setminus R, e \cap \operatorname{VR}(s, R \cup \{s\}) \neq \emptyset\}$

- a conflict relation between e and s.

Remark:

a Voronoi edge is defined by 4 sites under the general position assumption



#### Lemma 1

Let  $R \subseteq S$  and  $t \in S \setminus R$ . Let e be the Voronoi edge between  $\operatorname{VR}(p, R)$  and  $\operatorname{VR}(q, R)$ .  $e \cap \operatorname{VR}(t, R \cup \{t\}) = e \cap \operatorname{R}(t, \{p, q, r\})$ . (Local Test is enough) *Proof:* 

#### $\subseteq \texttt{:} \text{ Immediately from VR}(t, R \cup \{t\}) \subseteq \text{VR}(t, \{p, q, t\})$

 $\supseteq : \text{Let } x \in e \cap \text{VR}(t, \{p, q, t\})$ 

- Since  $x \in e, x \in VR(p, R) \cup VR(q, R)$  and  $x \notin VR(r, R) \supseteq VR(r, R \cup \{t\})$  for any  $r \in R \setminus \{p, q\}$ .
- Since  $x \in VR(t, \{p, q, t\}), x \notin VR(p, \{p, q, t\}) \cup VR(q, \{p, q, t\}) \supseteq VR(p, R \cup \{t\}) \cup VR(q, R \cup \{t\})$
- $x \notin \operatorname{VR}(r, R \cup \{t\})$  for any site  $r \in R \to x \in \operatorname{VR}(t, R \cup \{t\})$

Insertiong  $s \in S \setminus R$  to compute  $V(R \cup \{s\})$  and  $G(R \cup \{s\})$  from V(R) and G(R). Handle a conflict between s and a Voronoi edge e of VR(R)

#### Lemma 2

cl $e\cap$ cl $\mathrm{VR}(s,R\cup\{s\})\neq \emptyset$  implies  $e\cap\mathrm{VR}(s,R\cup\{s\})=\emptyset$  proof

- Let x belong to cl  $e \cap$  cl  $VR(s, R \cup \{s\})$
- x is an endpoint of e:
  - -x is the intersection among three curves in R
  - For any  $r \in R$ , J(s,r) cannot pass through x due to the general position assumption
  - $-x \in D(s,r) \rightarrow$  the neighborhood of  $x \in D(s,r)$
  - $\exists y \in e \text{ belongs to VR}(s, R \cup \{s\})$
- $x \in e \cap \mathrm{bd} \, \mathrm{VR}(s, R \cup \{s\})$ 
  - $-x \in J(p,q) \cap J(s,r)$
  - a point  $y \in e$  in the neighborhood of x such that  $y \in VR(s, R \cup \{s\})$

Let  $\mathcal{Q}$  be  $\operatorname{VR}(s, R \cup \{s\})$ 

#### Lemma 3

 $\mathcal{Q} = \emptyset$  if and only if  $\deg_{G(R)}(s) = 0$ proof  $(\rightarrow)$  If  $\mathcal{Q} = \emptyset$ ,  $\deg_{G(R)}(s) = 0$  $(\leftarrow)$ 

- $\deg_{G(R)}(s) = 0$  implies cl  $\mathcal{Q} \subseteq$  int  $\operatorname{VR}(r, R)$  for some  $r \in R$
- $\operatorname{VR}(r, R \cup \{s\}) = \operatorname{VR}(r, R) \mathcal{Q}$
- Since  $\operatorname{VR}(r, R \cup \{s\})$  must be simply connected,  $\mathcal{Q} = \emptyset$

#### Lemma 4

Let I be  $V(R) \cap \mathrm{bd} \mathcal{Q}$ .

I is a connected set which intersects bd Q in at least two points. *Proof:* 

- bd Q is a closed curve which does not go through any vertex of V(R) due to the general position assumption.
- Let  $I_1, I_2, \ldots, I_k$  be connected components of I
- Claim:  $I_j$ ,  $1 \le j \le k$ , contains two points of bd  $\mathcal{Q}$ .
  - If  $I_j$  contains no point,  $I_j \subseteq \text{int } \mathcal{Q}$ . In other words, for some  $r \in R$ ,  $\operatorname{VR}(r, R)$  contains  $I_j$ , contradicting that  $\operatorname{VR}(r, R)$  must be simply connected
  - If  $I_j$  intersects exactly one point x on bd  $\mathcal{Q}$ , let e be the Voronoi edge of V(R) which contains x. Then both sides of e belong to the same Voronoi region. There exists a contradiction.



- Assume the contrary that  $k \ge 2$ 
  - There is a path  $P \subseteq \operatorname{cl} \mathcal{Q} (\bigcup_{1 \leq j \leq k} I_j)$  connects two points on bd  $\mathcal{Q}$ such that one component of  $\mathcal{Q} - P$  contains  $I_1$  and the other component contains  $I_2$ .
  - Let x, y be the two endpoints of P and let  $r \in R$  such that  $P \subseteq VR(r, R)$ .
  - $\begin{array}{l} -\operatorname{Since}\,x,y\notin V(R),\,\operatorname{VR}(r,R\cup\{s\})=\operatorname{VR}(r,R)-\mathcal{Q}\neq\emptyset\rightarrow x,y\in \\ \operatorname{cl}\,\operatorname{VR}(r,R\cup\{s\}) \end{array} \end{array}$
  - Since  $x, y \in \text{cl VR}(r, R \cup \{s\})$ , there is a path  $P' \subseteq \text{VR}(r, R \cup \{s\})$  with endpoints x and y.
  - $-P \circ P'$  is contained in cl VR(r, R) and contains either  $I_1$  and  $I_2$ , contradicting cl VR(r, R) is simply connected



# Lemma 5

Let e be an edge of V(R). If  $e \cap \mathcal{Q} \neq \emptyset$ ,

- either  $(e \cap \mathcal{Q} = V(R) \cap \mathcal{Q} \text{ or } e \cap \mathcal{Q} \text{ is a single component}),$
- or  $e \mathcal{Q}$  is a single component





# Proof

- Assume first  $e \cap \mathcal{Q} = V(R) \cap \mathcal{Q}$ 
  - Since  $V(R) \cap \mathcal{Q}$  is connected,  $e \cap \mathcal{Q}$  is connected
- Assume next t  $e \cap \mathcal{Q} \neq V(R) \cap \mathcal{Q}$ 
  - At least one endpoint of e is contained in  $\mathcal{Q}$
  - For every point  $x \in e \cap Q$ , one of the subpaths of e connecting x to an endpoint of e must be contained in Q
  - $-e \cap \mathcal{Q}$  or  $e \mathcal{Q}$  is a single component

Rough Idea

- $\bullet$  Let L be  $\{e\in V(R)\mid (e,s)\in G(R)\}$
- For every edge  $e \in L$ , let e' be  $e \mathcal{Q} = e \operatorname{VR}(s, R \cup \{s\})$ . If e is an edge between  $\operatorname{VR}(p, R)$  and  $\operatorname{VR}(q, R)$ , e' = e D(s, p) = e D(s, q)
- Let B be  $\{x \in x \text{ is an endpoint of } e' \text{ but is not an endpoint of } e\} = V(R) \cap \operatorname{bd} \mathcal{Q}$
- bd Q is a cyclic ordering on the points in B



**Step 1:** Compute e' for each edge  $e \in L$ 

**Step 2:** Compute *B* and cyclic ordering on *B* induced by bd Q

- **Step 3:** Let  $x_1, \ldots, x_k$  be the set B in its cyclic ordering  $(x_{k+1} = x_1)$ , and let  $r_i$  such that  $(x_i, x_{i+1}) \in VR(r_i, r)$ 
  - For  $1 \leq i \leq k$ , add the part of  $J(r_i, s)$  with endpoints  $x_i$  and  $x_{i+1}$

#### Lemma 6

 $V(R \cup \{s\})$  can be constructed from V(R) and G(R) in time  $O(\deg_{G(R)}(s)+1)$ 

# Lemma 7

 $G(R \cup \{s\})$  can be constructed from V(R) and G(R) in  $O(\Sigma_{(e,s)\in G(R)}\deg_{G(R)}(e))$  time

- 1. Edges of  $V(R \cup \{S\})$  which were alreav edges of V(R) don't changes
- 2. Edges of  $V(R \cup \{S\})$  which are parts of edges in L
  - $\bullet$  consider each edge  $e \in L$
  - If  $e \subseteq \mathcal{Q}$ , e has to be deleted from conflict graph.
  - If  $e \not\subseteq \mathcal{Q}$ ,  $e \mathcal{Q}$  consists at most two subsegment.
  - let e' be one of the subsegments and let t be a site in  $S \setminus R \cup \{s\}$ .
  - $e' \cap \operatorname{VR}(t, R \cup \{s, t\}) = e' \cap_{r \in R} D(t, r) \cap D(t, s) = e' \cap \operatorname{VR}(t, R \cup \{t\}) \cap D(t, s) \subseteq e \cap \operatorname{VR}(t, R \cup \{t\})$
  - Any site t in conflict with e' must be in conflict with e
  - Takes time  $O(\sum_{e \in L} \deg_{G(R)}(e)) = O(\sum_{(e,s) \in G(R)} \deg_{G(R)}(e))$
- 3. Edges of  $VR(s, R \cup \{s\})$  which are complete new
  - Let  $e_{12}$  connect  $x_1$  and  $x_2$  in B
  - Let  $e_{12}$  belong to VR(p, R) such that  $e_{12}$  belongs to J(p, s)
  - Let  $x_1 \in e_1$  of VR(p, R) and  $x_2 \in e_2$  of VR(p, R)
  - Let P be the part of bd VR(p, R) which connects  $x_1$  and  $x_2$  and is contained in cl Q.
  - Lemma 8 will prove that If  $t \in S \setminus R \cup \{s\}$  is in conflict with  $e_{12}$ , t must be in conflict with either  $e_1$ ,  $e_2$  or one of the edges of P
  - Each edge in L is involved at most twice, takes time  $O(\sum_{(e,s)\in G(R)} \deg_{G(R)}(e))$

#### Lemma 7

Let  $t \in S \setminus (R \cup \{s\})$  and let t conflict with  $e_{12}$  in  $V(R \cup \{s\})$  (as defined in Lemma 7). t conflicts with  $e_1$ ,  $e_2$ , or one of the edges of P.

# *Proof:*

- By the definition of conflict, a point  $x \in e_{12}$  exists such that  $x \in VR(t, R \cup \{s, t\} \subseteq VR(t, R \cup \{t\})$
- Assume the contrary that t does not conflict with  $e_1$ ,  $e_2$ , or one edge of P.
- For any sufficiently small neighborhood of  $U(x_1)$  of  $x_1$ ,  $\operatorname{VR}(t, R \cup \{s, t\}) \cap U(x_1) \subseteq \operatorname{VR}(t, R \cup \{t\}) \cap U(x_1) = \emptyset$ , and it is also tru for  $x_2$ .
- Let p be a site in R such that  $e_{12} \subseteq \operatorname{cl} \operatorname{VR}(p, R \cup \{s\})$ , implying that  $x_1, x_2 \in \operatorname{cl} \operatorname{VR}(p, R \cup \{s\})$
- There is a path P' from  $x_1$  to  $x_2$  completely inside  $\operatorname{VR}(p, R\{s, t\}) \subseteq \operatorname{VR}(p, R \cup \{t\})$ .
- The cycle  $x_1 \circ P \circ x_2 \circ P'$  contains  $VR(t, R \cup \{t\})$  and is contained in  $VR(p, R \cup \{t\})$ .
- $\bullet$  contradict  $\mathrm{VR}(p,R\cup\{t\})$  is simply connected



#### Theorem 1

Let  $s \in S \setminus R$ .  $G(R \cup \{s\})$  and  $V(R \cup \{s\})$  can be constructed from G(R)and V(R) in time  $O(\sum_{(e,s)\in G(R)} \deg_{G(R)}(e))$ 

# Theorem 2

V(S) can be computed in  $O(n \log n)$  expected time

- $\sum_{3 \le i \le n} O(\sum_{(e,s_i) \in G(R_{i-1})} \deg_{G(R_{i-1})}(e))$
- Let e be a Voronoi edge of  $V(R_i)$  and let s be a site in  $S \setminus R_i$  which conflicts e.
- The conflict relation (e, s) will be counted only once since the counting only occured when e is removed
  - Let  $s_j$  be the earliest site in the sequence which conflicts with e. Then (e, s) will be counted in  $\deg_{G(R_{j-1})}(e)$
- Time proportional to the number of conflict relations between Voronoi edges in  $\bigcup_{2 \le i \le n} V(R_i)$  and sites in S
- The expected size of conflict history is  $-C_n + \sum_{2 \le i \le n} (n-j+1)p_j$ 
  - $-C_n$  is the expected size of  $\bigcup_{2 \le i \le n} V(R_i)$
  - $\, p_j$  is the expected number of Voronoi edges defined by the same two sites in  $V(R_j)$
- Since  $C_n = O(n)$  and  $p_j = O(1/j)$ , the expected run time is  $O(n \log n)$