4. Dynamic Setting

Addition and Deletion
\boldsymbol{M} : the set of objects in the give time after a series of addition and deletion

Remark

- $H(M)$ does no depend on the insertion order of M
- The history and the search structure depend on the insertion order

General Idea

- For each object in M, we randomly choose a priority (a real number) from the uniform distribution on the interval $(0,1)$.
- Shuffle (or a priority order) on M is the ordering of objects of M according to the increasing priorities
- Shuffle is exactly the insertion order
- $S_{k}=k^{\text {th }}$ object in the shuffle, and $M^{i}=\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$
- $\widetilde{H}\left(\operatorname{shuffle}\left(M^{i}\right)\right)$ is the history of $H\left(\operatorname{shuffle}\left(M^{1}\right)\right), H\left(\operatorname{shuffle}\left(M^{2}\right)\right), \ldots$, $H\left(\operatorname{shuffle}\left(M^{i}\right)\right)$

4. Random Binary Tree of Quick-Sort

$M=$	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}
Value	23	11	37	47	29	3	7	19
Priority	0.1	0.3	0.4	0.5	0.6	0.8	0.9	0.95

We want to delete S from M

Fact

If a point v is a descendent of a point u, u 's priority is lower than v 's
Case 1: S is a leaf in the sense that its two sons are both intervals

- Combine its two sons into one interval
- replace S with I

Case 2: S is an internal node in the sense that at least one of its sons is a point

- Move S to become a leaf and delete it
- Increase S 's priority step by step to prepared S is inserted later
- When S 's priority is higher than one of its sons, a rotation will happen and move S downward one level

Rotation:

Assume S has two sons $S^{\prime \prime}$ and $S^{\prime \prime}, S^{\prime}$ has low priority than $S^{\prime \prime}$

Repeatedly performing rotations will bring S to the bottom such that we can delete it.

The expected number of rotations is at most the expected depths of the binary tree, which is $O(\log n)$

Adding S

- use $\widetilde{H}(M)$ to locate S
- Split the interval contains S
- Assume S^{\prime} to be the original parent of the interval. Let S^{\prime} be the parent of S and S be the parent of the two new intervals
- Assign S a priority higher than S^{\prime}

Another viewpoint of rotation:

Deleting S from shuffle (M) can be carried out by moving S higher one by one.
l is the number of points with priorities higher than S
$M(i)$ is the priority-ordered set obtained from M by moving S higher in the order by i places.
shuffle $(M(0))$, shuffle $(M(1)), \ldots$, shuffle $(M(l))$
$B=M(i-1)$ and $C=M(i)$
Let S^{\prime} be the point just after S in the priority order B
$j=m-l+i-1$, i.e., $H(C)=H\left(C^{j}\right)$ and $H(B)=H\left(B^{j}\right)$
$\longrightarrow H\left(B^{j-1}\right) \xrightarrow{S} H\left(B^{j}\right) \xrightarrow{S^{\prime}} H\left(B^{j+1}\right) \longrightarrow H\left(B^{j+2}\right) \longrightarrow$
$=\quad=\quad=$
$\longrightarrow H\left(C^{j-1}\right) \xrightarrow{S^{\prime}} H\left(C^{j}\right) \xrightarrow{S} H\left(C^{j+1}\right) \longrightarrow H\left(C^{j+2}\right) \longrightarrow$

If $H(B)=H(C)$, this operation is free.

- S and S^{\prime} is contained in different intervals of $H\left(B^{j-1}\right)$

$$
H\left(B^{4}\right)=H\left(C^{4}\right)
$$

$$
H\left(B^{6}\right)=H\left(C^{6}\right)
$$

add S^{\prime}

add S

If we give S a priority above that of S^{\prime}, a right rotation can reflect the new shuffle on M

4.2 Trapezoidal Decomposition

