
4. Dynamic Setting

Addition and Deletion

M : the set of objects in the give time after a series of addition

and deletion

Remark

• H(M) does no depend on the insertion order of M

• The history and the search structure depend on the insertion order

General Idea

• For each object in M , we randomly choose a priority (a real number)

from the uniform distribution on the interval (0, 1).

• Shuffle (or a priority order) on M is the ordering of objects of M ac-

cording to the increasing priorities

• Shuffle is exactly the insertion order

• Sk = kth object in the shuffle, and M i = {S1, S2, . . . , Si}

• H̃(shuffle(M i)) is the history of H(shuffle(M 1)), H(shuffle(M 2)), . . .,

H(shuffle(M i))

4. Random Binary Tree of Quick-Sort

M = S1 S2 S3 S4 S5 S6 S7 S8

Value 23 11 37 47 29 3 7 19

Priority 0.1 0.3 0.4 0.5 0.6 0.8 0.9 0.95

We want to delete S from M



Fact

If a point v is a descendent of a point u, u’s priority is lower than v’s

Case 1: S is a leaf in the sense that its two sons are both intervals

• Combine its two sons into one interval

• replace S with I

S

I1 I2

I

Case 2: S is an internal node in the sense that at least one of its sons is a

point

• Move S to become a leaf and delete it

– Increase S’s priority step by step to prepared S is inserted later

– When S’s priority is higher than one of its sons, a rotation will happen

and move S downward one level

Rotation:

Assume S has two sons S ′ and S ′′, S ′ has low priority than S ′′

S

S ′ S ′′

α β

γ

S

S ′

S ′′

α β

γ



Repeatedly performing rotations will bring S to the bottom such that we can

delete it.

The expected number of rotations is at most the expected depths of the binary

tree, which is O(log n)

Adding S

• use H̃(M) to locate S

• Split the interval contains S

• Assume S ′ to be the original parent of the interval. Let S ′ be the parent

of S and S be the parent of the two new intervals

• Assign S a priority higher than S ′

Another viewpoint of rotation:

Deleting S from shuffle(M) can be carried out by moving S higher one

by one.

l is the number of points with priorities higher than S

M(i) is the priority-ordered set obtained from M by moving S higher in the

order by i places.

shuffle(M(0)), shuffle(M(1)), . . ., shuffle(M(l))

B = M(i− 1) and C = M(i)

Let S ′ be the point just after S in the priority order B

j = m− l + i− 1, i.e., H(C) = H(Cj) and H(B) = H(Bj)

H(Bj−1) H(Bj) H(Bj+1) H(Bj+2)

H(Cj−1) H(Cj) H(Cj+1) H(Cj+2)

S

S

S ′

S ′
= = =



If H(B) = H(C), this operation is free.

• S and S ′ is contained in different intervals of H(Bj−1)

S S1S2 S3 S4S ′

S1

S2 S3
S4

S S1S2 S3 S4S ′

S1

S2 S3
S4

S S1S2 S3 S4S ′

S1

S2 S3
S4

S S1S2 S3 S4S ′

S1

S2 S3
S4

S

S

H(B4) = H(C4)

H(B6) = H(C6)

H(B5) H(C5)

add S add S ′

add S ′ add S



If we give S a priority above that of S ′, a right rotation can reflect the new

shuffle on M

H(Bj−1)

H(Bj)

H(Bj+1)

S

S S ′

α β γ

α

add S

add S ′

H(Cj−1)

H(Cj)

H(Cj+1)
S

α β γ

add S ′

add S

S ′

β

S

S ′

α

β γ

S ′

α β

γ

S



4.2 Trapezoidal Decomposition

f
S

S ′

f1 S

S ′

S

S ′

f2

f3

g1

g2
g3

S ′

h1

h2
h3

h4

h5

f

f1 f2

f3 = h5h1 h2 h3 h4 g1 = h1 h2 h3 h4 h5

g2 g3

f


