4. Dynamic Setting

Addition and Deletion

 $\boldsymbol{M}:$ the set of objects in the give time after a series of addition and deletion

Remark

- \bullet H(M) does no depend on the insertion order of M
- The history and the search structure depend on the insertion order

General Idea

- For each object in M, we randomly choose a priority (a real number) from the uniform distribution on the interval (0, 1).
- \bullet Shuffle (or a priority order) on M is the ordering of objects of M according to the increasing priorities
- Shuffle is exactly the insertion order
- $S_k = k^{\text{th}}$ object in the shuffle, and $M^i = \{S_1, S_2, \dots, S_i\}$
- $\widetilde{H}(\text{shuffle}(M^i))$ is the history of $H(\text{shuffle}(M^1)), H(\text{shuffle}(M^2)), \ldots, H(\text{shuffle}(M^i))$
- 4. Random Binary Tree of Quick-Sort

M =	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
Value	23	11	37	47	29	3	7	19
Priority	0.1	0.3	0.4	0.5	0.6	0.8	0.9	0.95

We want to	delete	S	from	M
------------	--------	---	------	---

Fact

If a point v is a descendent of a point u, u's priority is lower than v's

Case 1: S is a leaf in the sense that its two sons are both intervals

- Combine its two sons into one interval
- replace S with I

Case 2: S is an internal node in the sense that at least one of its sons is a point

- \bullet Move S to become a leaf and delete it
 - Increase S's priority step by step to prepared S is inserted later
 - When S's priority is higher than one of its sons, a rotation will happen and move S downward one level

Rotation:

Assume S has two sons S' and S'', S' has low priority than S''

Repeatedly performing rotations will bring S to the bottom such that we can delete it.

The expected number of rotations is at most the expected depths of the binary tree, which is $O(\log n)$

Adding S

- use $\widetilde{H}(M)$ to locate S
- Split the interval contains S
- Assume S' to be the original parent of the interval. Let S' be the parent of S and S be the parent of the two new intervals
- Assign S a priority higher than S'

Another viewpoint of rotation:

Deleting S from $\operatorname{shuffle}(M)$ can be carried out by moving S higher one by one.

l is the number of points with priorities higher than ${\cal S}$

M(i) is the priority-ordered set obtained from M by moving S higher in the order by i places.

 $\operatorname{shuffle}(M(0)), \operatorname{shuffle}(M(1)), \ldots, \operatorname{shuffle}(M(l))$

$$\begin{split} B &= M(i-1) \text{ and } C = M(i) \\ \text{Let } S' \text{ be the point just after } S \text{ in the priority order } B \\ j &= m-l+i-1, \text{ i.e., } H(C) = H(C^j) \text{ and } H(B) = H(B^j) \end{split}$$

$$\longrightarrow H(B^{j-1}) \xrightarrow{S} H(B^{j}) \xrightarrow{S'} H(B^{j+1}) \longrightarrow H(B^{j+2}) \longrightarrow$$

$$= = = =$$

$$\longrightarrow H(C^{j-1}) \xrightarrow{S'} H(C^{j}) \xrightarrow{S} H(C^{j+1}) \longrightarrow H(C^{j+2}) \longrightarrow$$

If H(B) = H(C), this operation is free.

• S and S' is contained in different intervals of $H(B^{j-1})$

If we give S a priority above that of $S^\prime,$ a right rotation can reflect the new shuffle on M

4.2 Trapezoidal Decomposition

