Geometry Duality and k-sets

2-partition

For two subsets A, B of S, A and B form a 2-partition of S if $A \cap B \neq \emptyset$ and $A \cup B=S$.

Given a set S of n points in the plane, how many 2-partitions of S can be separated by a straight line?

General Position Assumption:

No three points of S are on the same line.

How to count such 2-partitions?

1. Consider a straight L not orthogonal to any line $\overleftarrow{p q}$ for any two points $p, q \in S$.
2. Project each point $p \in S$ to L and let p^{\prime} be the projection point

How to count such 2-partitions?(Continues.)

3. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be the sequence of projection points on L (in one direction).
4. A straight line orthogonal to L and passing between a_{i} and a_{i+1} separates S into i-element and $(n-i)$-element subsets.
5 . Consider a point c on L and whose y-coordinate smaller than that of all points of S.
6 . Rotate L at c coutnerclockwise.
5. When L will be orthogonal to $\overline{p q}$ for two points, $p, q \in S$:

- Their projection points are adjacent in the sequence of projection points of S on L, i.e., if the projection point of p is a_{i}, the projection point of q is a_{i+1} or a_{i-1}.
- When L is orthogonal to $\grave{p q}$, the two projections are coincident, and after that, their positions in the seqeuence are swapped.

How to count such 2-partitions?(Continues.)

8 . For $1 \leq i \leq n$, let p_{i} be a point of S whose projection point on L is a_{i}
9. Before the positions of a_{i} and a_{i+1} are swapped, $\left\{p_{1}, \ldots, p_{i-1}, p_{i}\right\}$ and $\left\{p_{i+1}, p_{i+2}, \ldots, p_{n}\right\}$ is separated by a straight line orthogonal to L and passing between a_{i} and a_{i+1}.
10. After the positions of a_{i} and a_{i+1} are swapped, $\left\{p_{1}, \ldots, p_{i-1}, p_{i+1}\right\}$ and $\left\{p_{i}, p_{i+2}, \ldots, p_{n}\right\}$ is separated by a straight line orthogonal to L and passing between a_{i} and a_{i+1}.
\# of swaps during the rotation is \# of 2-partitions of S which can be separated by a straight line.
$\rightarrow n(n-1)$.

How to enumerate the $n(n-1)$ 2-partitions?
An intuitive method

- sort $n(n-1) / 2$ slopes of striaght lines passing through two points of S
- Following the order of sorted slopes, compute all the $n(n-1)$ swaps and thus the 2-partitions.
- $O\left(n^{2} \log n\right)$ time

Can we do better?

- the optimal time is $O\left(n^{2}\right)$
- Using Geometry Duality.

Central Duality

- For a point $p=(a, b) \in \mathbb{R}^{2} \backslash\{0\}, \Psi(p)$ is a line: $a x+b y=1$.
- For a line $L: a x+b y=1, \Psi(L)$ is a point (a, b).

Fact For a point $p \in \mathbb{R}^{2} \backslash\{0\}$ and a line L not passing through the origin, p and the origin are in the same size of L if and only if $\Psi(L)$ and the origin are in the same side of $\Psi(p)$.

Lemma

For a line L not passing through the origin, and a set S of points no of which is the origin, let S_{L} be the set of points in S which are in the same side of L with the origin, and S_{R} be the set of points in S which are in the different side of L from the origin.
Then, $\Psi(L)$ and the origin are in the same side of each of $\Psi\left(S_{L}\right)$, but $\Psi(L)$ and the origin are in different sides of each of $\Psi\left(S_{R}\right)$.

Corollary

For a point $p \in \mathbb{R}^{2} \backslash\{0\}$, and a set \mathcal{L} of lines no of which passes through the origin, let \mathcal{L}_{L} be the set of lines in \mathcal{L} each of which includes the origin and p in the same side, and \mathcal{L}_{R} be the set of lines in \mathcal{L} each of which includes the origin and p in the different sides.
Then, $\Psi(p)$ partitions $\Psi(\mathcal{L})$ into $\Psi\left(\mathcal{L}_{L}\right)$ and $\Psi\left(\mathcal{L}_{R}\right)$.

Theorem

Given a set S of n points, it takes $O\left(n^{2}\right)$ time to generate all the $O\left(n^{2}\right)$ 2partitions of S which can be separated by a straight line.
Sketch of proof

- Assume no of S is the origin; otherwise translate S.
- Consider the arrangement $A(\Psi(S))$ formed by the n lines in $\Psi(S)$.
- Due to the central duality, for all points p in a cell of $A(\Psi(S)), \Psi(p)$ partition S into the same 2-partition.
- For each two adjacent cells in $A(\Psi(S))$, the corresponding two partitons just differ by one point.
- A depth-first-search can visit all $O\left(n^{2}\right)$ cells of $A(\Psi(S))$ in $O\left(n^{2}\right)$ time.

Definition

Given a set S of n points, a subset Q of S is called a k-set if $|Q|=k$ and Q and $S \backslash Q$ can be separated by a straight line.
A $\leq k$-set of S is an i-set of $S, i \leq k$.

Fact

The number of $\leq k$-sets of S is equivalent to the number of switches that occur in the first k positions of the sequence of projection points during the rotation, i.e., the number of switches between a_{i} and a_{i+1} for $1 \leq i \leq k$.

Theorem

Consider a cyclic sequence of permutations, $P_{0}, P_{1}, \ldots, P_{2 N}=P_{0}$, where $N=\binom{n}{2}$, satisfying

1. P_{i} and P_{i+N} are in reverse order,
2. and P_{i+1} differs from P_{i} by an adjacent swtich.

Then the number of swtiches in the first k positions for $2 N$ consecutive permutations ist at most $k n$.
In other words, the number of $\leq k$-sets of n points is at most $k n$.

Sketch of Proof

- The total number of switches involving an element b is exactly $2 \mathrm{n}-2$ (twice with any other element).
- If b occurs in a switch in position $i \in(1,2, \ldots, k)$, it also occurs in a switch in position $n-i$.
- If $i<j<n-i$, by continuity, b occurs in at least two switches in position j (because b will come back to position i)
- Any element occurs in at most $2 \mathrm{n}-2-2(\mathrm{n}-2 \mathrm{k}-1)=4 \mathrm{k}$ switches in positions $\{1,, 2, \ldots, k\} \cup\{n-k, \ldots, n-1\}$
- The total number of switches in these positiosn is half of the sum of occurences of elements in such switchesm, i.e., $\leq \frac{1}{2} n 4 k=2 n k$.
- The total number of switches for the first k positions is precisely half of this quantity, i.e., $\leq n k$.

