Geometry Duality and k-sets

2-partition

For two subsets A, B of S, A and B form a 2-partition of S if $A \cap B \neq \emptyset$ and $A \cup B = S$.

Given a set S of n points in the plane, how many 2-partitions of S can be separated by a straight line?

General Position Assumption:

No three points of S are on the same line.

How to count such 2-partitions?

- 1. Consider a straight L not orthogonal to any line \overrightarrow{pq} for any two points $p, q \in S$.
- 2. Project each point $p \in S$ to L and let p' be the projection point

How to count such 2-partitions?(Continues.)

- 3. Let (a_1, a_2, \ldots, a_n) be the sequence of projection points on L (in one direction).
- 4. A straight line orthogonal to L and passing between a_i and a_{i+1} separates S into i-element and (n-i)-element subsets.
- 5. Consider a point c on L and whose y-coordinate smaller than that of all points of S.
- 6. Rotate L at c coutnerclockwise.
- 7. When L will be orthogonal to \overline{pq} for two points, $p, q \in S$:
 - Their projection points are adjacent in the sequence of projection points of S on L, i.e., if the projection point of p is a_i , the projection point of q is a_{i+1} or a_{i-1} .
 - When L is orthogonal to \overrightarrow{pq} , the two projections are coincident, and after that, their positions in the sequence are swapped.

How to count such 2-partitions?(Continues.)

- 8. For $1 \leq i \leq n$, let p_i be a point of S whose projection point on L is a_i
- 9. Before the positions of a_i and a_{i+1} are swapped, $\{p_1,\ldots,p_{i-1},p_i\}$ and $\{p_{i+1},p_{i+2},\ldots,p_n\}$ is separated by a straight line orthogonal to L and passing between a_i and a_{i+1} .
- 10. After the positions of a_i and a_{i+1} are swapped, $\{p_1, \ldots, p_{i-1}, p_{i+1}\}$ and $\{p_i, p_{i+2}, \ldots, p_n\}$ is separated by a straight line orthogonal to L and passing between a_i and a_{i+1} .

of swaps during the rotation is # of 2-partitions of S which can be separated by a straight line.

ightarrow n(n-1).

How to enumerate the n(n-1) 2-partitions?

An intuitive method

- sort n(n-1)/2 slopes of striaght lines passing through two points of S
- Following the order of sorted slopes, compute all the n(n-1) swaps and thus the 2-partitions.
- $O(n^2 \log n)$ time

Can we do better?

- the optimal time is $O(n^2)$
- Using Geometry Duality.

Central Duality Ψ

- For a point $p = (a, b) \in \mathbb{R}^2 \setminus \{0\}$, $\Psi(p)$ is a line: ax + by = 1.
- For a line L: ax + by = 1, $\Psi(L)$ is a point (a, b).

Fact For a point $p \in \mathbb{R}^2 \setminus \{0\}$ and a line L not passing through the origin, p and the origin are in the same size of L if and only if $\Psi(L)$ and the origin are in the same side of $\Psi(p)$.

Lemma

For a line L not passing through the origin, and a set S of points no of which is the origin, let S_L be the set of points in S which are in the same side of L with the origin, and S_R be the set of points in S which are in the different side of L from the origin.

Then, $\Psi(L)$ and the origin are in the same side of each of $\Psi(S_L)$, but $\Psi(L)$ and the origin are in different sides of each of $\Psi(S_R)$.

Corollary

For a point $p \in \mathbb{R}^2 \setminus \{0\}$, and a set \mathcal{L} of lines no of which passes through the origin, let \mathcal{L}_L be the set of lines in \mathcal{L} each of which includes the origin and p in the same side, and \mathcal{L}_R be the set of lines in \mathcal{L} each of which includes the origin and p in the different sides.

Then, $\Psi(p)$ partitions $\Psi(\mathcal{L})$ into $\Psi(\mathcal{L}_L)$ and $\Psi(\mathcal{L}_R)$.

Theorem

Given a set S of n points, it takes $O(n^2)$ time to generate all the $O(n^2)$ 2-partitions of S which can be separated by a straight line.

Sketch of proof

- \bullet Assume no of S is the origin; otherwise translate S.
- Consider the arrangement $A(\Psi(S))$ formed by the n lines in $\Psi(S)$.
- Due to the central duality, for all points p in a cell of $A(\Psi(S))$, $\Psi(p)$ partition S into the same 2-partition.
- For each two adjacent cells in $A(\Psi(S))$, the corresponding two partitions just differ by one point.
- A depth-first-search can visit all $O(n^2)$ cells of $A(\Psi(S))$ in $O(n^2)$ time.

Definition

Given a set S of n points, a subset Q of S is called a k-set if |Q| = k and Q and $S \setminus Q$ can be separated by a straight line.

 $A \leq k$ -set of S is an *i*-set of S, $i \leq k$.

Fact

The number of $\leq k$ -sets of S is equivalent to the number of switches that occur in the first k positions of the sequence of projection points during the rotation, i.e., the number of switches between a_i and a_{i+1} for $1 \leq i \leq k$.

Theorem

Consider a cyclic sequence of permutations, $P_0, P_1, \ldots, P_{2N} = P_0$, where $N = \binom{n}{2}$, satisfying

- 1. P_i and P_{i+N} are in reverse order,
- 2. and P_{i+1} differs from P_i by an adjacent swtich.

Then the number of swtiches in the first k positions for 2N consecutive permutations ist at most kn.

In other words, the number of $\leq k$ -sets of n points is at most kn.

Sketch of Proof

- \bullet The total number of switches involving an element b is exactly 2n-2 (twice with any other element).
- If b occurs in a switch in position $i \in (1, 2, ..., k)$, it also occurs in a switch in position n i.
- If i < j < n-i, by continuity, b occurs in at least two switches in position j (because b will come back to position i)
- Any element occurs in at most 2n-2-2(n-2k-1)=4k switches in positions $\{1, 2, \ldots, k\} \cup \{n-k, \ldots, n-1\}$
- The total number of switches in these positions is half of the sum of occurences of elements in such switchesm, i.e., $\leq \frac{1}{2}n4k = 2nk$.
- The total number of switches for the first k positions is precisely half of this quantity, i.e., $\leq nk$.