Lattices and Minkowsky's Theorem

Integer Lattices

A lattice point in the integer lattice \mathbb{Z}^d is a point in \mathbb{R}^d with integer coordinates.

Minkowski's Theorem

Let $C \subseteq \mathbb{R}^d$ be symetric around the origin (i.e., C = -C), convex, and bounded, and suppose that $vol(C) > 2^d$.

Then C contains at least one lattice point different from 0.

Claim

Let C' be $\frac{1}{2}C$, i.e., $C' = \{\frac{1}{2}x \mid x \in C\}$. There exists a nonzero integer vector $v \in \mathbb{Z}^d \setminus \{0\}$ such that $C' \cap (C'+v) \neq \emptyset$; i.e., C' and a translate of C' by an intger vector intersect. Sketch of proof

- By contradiction; suppose the claim is false.
- Let R be a large integer number.
- Consider the family C of translates of C' by the integer vectors in the cube $[-R, R]^d$ (See figure in the next page):

$$\mathcal{C} = \{ C' + v \mid v \in [-R, R]^d \cap \mathbb{Z}^d \}$$

- By assumption, each such translate is disjoint from C', and every two of the translates are disjoint as well.
- All translates are contained in the enlarged cube $K = [-R D, R + D]^d$, where D denotes the diameter of C':

$$\operatorname{vol}(K) = (2R + 2D)^d \ge |\mathcal{C}|\operatorname{vol}(C') = (2R + 1)^d \operatorname{vol}(C'), \text{ and}$$
$$\to \operatorname{vol}(C') \le \left(1 + \frac{2D - 1}{2R + 1}\right)^d.$$

- \bullet The left hand side is arbitrarily close to 1 for sufficiently large R
- Since $\operatorname{vol}(C')2^{-d}\operatorname{vol}(C) > 1$, the lefthand side, is a fixed number exceeding 1 by a certain amount independent of R.
- There exists a contradiction.

Proof of Minkowski Theorem

- Fix a vector $v \in \mathbb{Z}^d$ as in the Claim, and choose a point $x \in C' \cap (C'+v)$.
- $x v \in C'$.
- Since C' is symetric, $v x \in C'$.
- Since C' is convex, the midpoint of the segment between x and v x lies in C', i.e.,

$$\frac{1}{2}x + \frac{1}{2}(v - x) = \frac{1}{2}v \in C'$$

Example (A regular forest)

Let K be a circle of diamter 26 centered at the origin. Threes of diameter 0.16 grow at each lattice point within K except for the origin. You stand at the origin. Prove that you cannot see outside this miniforest.

Sktech of Proof

- Assume the contrary that one could see outside along some line l passing through the origin.
- The strip S of width 0.16 with l as the middle line contains no lattice point in K except for the origin.
- In other words, the sysmetric convex set $C = K \cap S$ contains no lattice points but he origin.
- Since vol(C) > 4, it contradicts Minkowski's theorem.

Proposition (Approximating an irrational number by a fraction) Let $\alpha \in (0, 1)$ be a real number and N be a natural number. Then there exists a pair of natural numbers m, n such that $n \leq N$ and

$$|\alpha - \frac{m}{n}| < \frac{1}{nN}.$$

This proposition implies that there are infinitely many pairs m, n such that $\alpha - \frac{m}{n} < \frac{1}{n^2}$, which is a basic and well-known result in elemantary number theory.

Proof of the Proposition

• Consider the set

$$C = \{(x, y) \in \mathbb{R}^2 \mid -N - \frac{1}{2} \le x \le N + \frac{1}{2}, \ |\alpha x - y| < \frac{1}{N}\}$$

- C is symmetric.
- $\operatorname{vol}(C) = (2N+1)\frac{2}{N} > 4.$
- Therefore, C contains some nonzero integer lattice point (n, m).
- By symmetry, assume n > 0.
- By the definition of $C, n \leq N$, and $|\alpha n m| < \frac{1}{N}$. In other words,

$$|\alpha - \frac{m}{n}| < \frac{1}{nN}.$$

General Lattices

Let z_1, z_2, \ldots, z_d be a *d*-tuple of linearly independent vectors in \mathbb{R}^d . The **lattice with basis** $\{z_1, z_2, \ldots, z_d\}$ is the set of all linear combinations of the z_i with integer coefficients:

$$\Lambda = \Lambda(z_1, \ z_2, \dots, \ z_d) = \{i_1 z_1 + i_2 z_2 + \dots + i_d z_d \mid \ (i_1, \ i_2, \dots, \ i_d) \in \mathbb{Z}^d\}$$

Remark

A general lattice has in general many different bases. For example, the sets $\{(1,0), (0,1)\}$ and $\{(1,0), (3,1)\}$ are both bases of the "standard" lattice \mathbb{Z}^2 .

Determinant of a lattice

Form a $d \times d$ matrix Z with the vector z_1, \ldots, z_d as columns.

The **determinant of the lattice** $\Lambda = \Lambda(z_1, z_2, \ldots, z_d)$, denoted by det Λ is $|\det Z|$.

Geometrically, det Λ is the volume of the parallelepipied $\{\alpha_1 z_1 + \alpha_2 z_2 + \cdots + \alpha_d z_d \mid \alpha_1, \ldots, \alpha_d \in [0, 1]\}.$

Remark

- det Λ is a property of the Λ , and it does not depend on the choice of basis of Λ .
- If Z is the matrix of some basis of Λ , the matrix of every basis of Λ has the form BU, where U is an integer matrix with determinant ± 1

Minkowski's theorem for general lattices

Let Λ be a lattice in \mathbb{R}^d , and let $C \subseteq \mathbb{R}^d$ be a symmetric convex set with $\operatorname{vol}(C) > 2^d \det \Lambda$. Then C contains a point of Λ different from 0.

Sketch of Proof

- Let $\{z_1, \ldots, z_d\}$ be a basis of Λ .
- Define a linear mapping $f : \mathbb{R}^d \to \mathbb{R}^d$ by $f(x_1, x_2, \ldots, x_d) = x_1 z_1 + x_2 z_2 + \cdots + x_d z_d$.
- f is a bijection and $\Lambda = f(\mathbb{Z}^d)$.
- For any convex set X,

$$\operatorname{vol}(f(X)) = \det(\Lambda)\operatorname{vol}(X).$$

- If X is a cube, this trivially holds.
- A convex set can be approximated by a disjoint union of sufficiently small cubes with arbitrary precision.
- Let C' be $f^{-1}(C)$.
- C' is a symmetric convex set with $\operatorname{vol}(C') = \operatorname{vol}(C)/\det \Lambda > 2^d$.
- By Minkowski's theorem, C' contains a integer lattice v in \mathbb{Z}^d .
- C contains f(v), and f(v) is a lattice point of Λ .

A seemingly more general definition of a lattice

What if we consider integer linear combinations of more than d vectors in \mathbb{R}^d ? If we take d = 1 and the vectors $v_1 = (1)$ and $v_2 = \sqrt{2}$, then the integer linear combination $i_1v_1 + i_2v_2$ are dense in the real line. But it is not called a lattice.

Definition

A **discrete subgroup** of \mathbb{R}^d is a set Λ of \mathbb{R}^d such that whenever $x, y \in \Lambda$, then also $x - y \in \Lambda$ and such that the distance of any two distinct points of Λ is at least δ , for some fixed positive real number $\delta > 0$.

Remark

- If $v_1, v_2, \ldots, v_n \in \mathbb{R}^d$ are vectors with *rational* coordinates, the set Λ of all their integer linear combinations is a discrete subgroup of \mathbb{R}^d .
- Any discrete subgroup of \mathbb{R}^d whose linear span is all of \mathbb{R}^d is a general lattice. (The following theorem)

Lattice Basis Theorem

Let $\Lambda \subset \mathbb{R}^d$ be a discrete group of \mathbb{R}^d whose linear span is \mathbb{R}^d . Then Λ has a basis: there exists d linearly independent vectors $z_1, z_2, \ldots, z_d \in \mathbb{R}^d$ such that $\Lambda = \Lambda(z_1, z_2, \ldots, z_d)$.

- Prove by induction
- Consider $i, 1 \leq i \leq d+1$, and assume linearly independent vectors $z_1, z_2, \ldots, z_{i-1}$ have already constructed:
 - Let F_{i-1} denotes the (i 1)-dimensional subspace spanned by $z_1, z_2, \ldots, z_{i-1}$.
 - All points of Λ lying in F_{i-1} can be written as integer linear combinations of $z_1, z_2, \ldots, z_{i-1}$.
- If i = d + 1, the statement of the theorem holds.
- So consider $i \leq d$ and construct z_i
- Since Λ generates \mathbb{R}^d , there exists a vector $w \in \Lambda$ not lying in the subspace F_{i-1} .
- Let P be *i*-dimensional parallelepiped determined by $z_1, z_2, \ldots, z_{i-1}$ and by w:

$$P = \{ \alpha_1 z_1 + \alpha_2 z_2 + \dots + \alpha_{i-1} z_{i-1} + \alpha_i w \mid \alpha_1, \dots, \alpha_i \in [0, 1] \}$$

- Among all the points of Λ lying in P but not in F_{i-1} , choose one nearest to F_{i-1} and call it z_i .
- If the points of $\Lambda \cap P$ are written in the from $\alpha_1 z_1 + \alpha_2 z_2 + \cdots + \alpha_{i-1} z_{i-1} + \alpha_i w$, z_i is the w with smallest α_i .
- Let F_i be the linear space of z_1, \ldots, z_i . Then, if a point $v \in \Lambda$ lies in F_i , v can be written as $\beta_1 z_1 + \beta_2 z_2 + \cdots + \beta_i z_i$ for some real numbers β_1, \ldots, β_i .
- We will prove that all β_j , for $1 \leq j \leq i$, are all integers, leading to the theorem
- Let γ_j be the fractional part of β_j , for $1 \le j \le i$, i.e., $\gamma_j = \beta_j \lfloor \beta_j \rfloor$.
- Let v' be $\gamma_1 z_1 + \gamma_2 z_2 + \cdots + \gamma_i z_i$.
- v' must belong to Λ since v and v' differ by an integer linear combination of vectors of Λ .
- Since $0 \le \gamma_j < 1$, v' lies in the parallelepiped P.
- We must have $\gamma_i = 0$; otherwise, v' would be nearer to F_{i-1} than z_i .
- Hence $v' \in \Lambda \cap F_{i-1}$, and by the inductive hypothesis, we also get that all the other γ_j are 0.
- So all the β_j are integers.

Remark

A general lattice can also be defined as a full-dimensional discrete subgroup of $\mathbb{R}^d.$

Applications

Two-Square Theorem

Each pime $p \equiv 1 \pmod{4}$ can be writted as a sum of two squares:

$$p = a^2 + b^2, a, b \in \mathbb{Z}.$$

Definition

An integer a is called a **quadratic residue** modulo p if there exists an integer x such that

$$x^2 \equiv a \pmod{p}$$

Otherwise, q is a **quadratic nonresidue** modulo p.

Lemma

If p is a prime with $p \equiv 1 \pmod{4}$, then -1 is a quadratic residue modulo p.

- Let F be the field of residue classes modulo p, and let F^* be $F \setminus \{0\}$.
- $i^2 = 1$ has two solutions in F, namely, i = 1 and i = -1.
- For any $i \neq \pm 1$, there exists exactly one $j \neq i$ with ij = 1, namely, $j = i^{-1}$ is the inverse element in F.
- Therefore, all the elements of $F^* \setminus \{-1, 1\}$ can be divided into pairs such that product of elements in each pair is 1.
- $(p-1)! = 1 \cdot 2 \cdots (p-1) \equiv -1 \pmod{p}$.
- Suppose that contradiction that the equation $i^2 = -1$ has no solution in F.
- All the elements in F^* can be divided into pairs such that the product of the elements in each pair is -1.
- There are (p-1)/2 pairs, which is an even number.
- Hence $(p-1)! \equiv (-1)^{(p-1)/2} = 1$, a contradiction.

Proof of Two-square theorem

- Choose a number q such that $q^2 \equiv -1 \pmod{p}$.
- Consider the lattice $\Lambda = \Lambda(z_1, z_2)$, where $z_1 = (1, q)$ and $z_2 = (0, p)$.
- det $\Lambda = p$.
- Consider a disk $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 2p\}.$
- The area of C is $2\pi p > 4p = 2^2 \det \Lambda$.
- By Minkowski's theorem for general lattices, C contains a point $(a, b) \in \Lambda \setminus \{0\}$.
- We have $0 < a^2 + b^2 < 2p$.
- At the same time, $(a,b) = iz_1 + jz_2$ for some $i, j \in \mathbb{Z}^2$, i.e., a = i, b = iq + jp.
- $a^2 + b^2 = i^2 + (iq + jp)^2 = i^2 + i^2q^2 + 2iqjp + j^2p^2 \equiv i^2(1+q^2) \equiv 0 \pmod{p}$.
- Therefore $a^2 + b^2 = p$.